

- 1. COMPRESSION TEST ON A SINGLE METALLIC EXPANSION JOINT
- 2. HELIUM LEAK TESTING ON EXPANSION JOINTS DUE TO CRITICAL SERVICE REQUIREMENTS
- 3. QUALITY CHECKING A SINGLE METALLIC EXPANSION JOINT
- 4. ROUND FABRIC EXPANSION JOINTS
- 5. UNIVERSAL GIMBAL METALLIC EXPANSION JOINT
- 6. GROUP PHOTO OF U.S. BELLOWS ENGINEERS AND DESIGNERS

TABLE OF CONTENTS

INTRODUCTION

Background and Facilities	1
Manufacturing Capabilities and Equipment	2
Quality Standards	3
EXPANSION JOINTS USING METAL BELLOWS	
Bellows Design	5
Types and Design Styles	10
Accessories	15
Glossary of Terms	18
Safety Recommendations	21
DESIGN	
Pipe Guide Spacing Table	27
Round Expansion Joint Data Sheet	28
Sample Specification	29
Installation Instructions	30
Catalog Flange Data	31
Angle Flanges	32
Bellows Material	33
APPLICATIONS	
Applications to Piping Systems	34
SINGLE STYLE	
Cycle Life and Rated Movement	42
Data Tables by Nominal Diameter	45
Multi-ply Stainless Steel Bellows	76
UNIVERSAL STYLE	
Cycle Life and Rated Movement	79
Data Tables by Nominal Diameter	82
EXTERNALLY PRESSURIZED (X-FLEX STYLE)	
Cycle Life and Rated Movement	93
Data Tables by Nominal Diameter	95
RECTANGULAR METAL EXPANSION JOINTS	103
THICK-WALL METAL EXPANSION JOINTS	107
SLIP-TYPE EXPANSION JOINTS	108
HINGED EXPANSION JOINTS	109
GIMBAL EXPANSION JOINTS	109
REFRACTORY LINED EXPANSION JOINTS	110
FABRIC EXPANSION JOINTS	111
PRODUCT SHOWCASE	112
TERMS OF SALE	135

View our online catalog at: <u>www.usbellows.com/catalog</u>

PRODUCT SHOWCASE INDEX

DESCRIPTION

SINGLE EXPANSION JOINTS	
Single Flanged Expansion Joint for an Exhaust Duct	
76" Diameter Single Expansion Joints with Refractory Lining	
Same-Day Turn Around Service by Refurbishing an 8" Single Expansion Joint	
18" Single Expansion Joints for an Offshore Oil Platform in Korea	
Single Tied Metallic Expansion Joints with Two-Ply Alloy Bellows	
Flanged Expansion Joints for a Thermal Power Plant	
18" Expansion Joints that Required Helium Leak Testing	
5 Expansion Joints for a Heat Exchanger Company in Japan	
Single Expansion Joint Assembly for an Oil Refinery in South Africa	
188 Single Tied Expansion Joints for a Construction Company	
14 Single Reinforced Metal Expansion Joints	
4 Convolution Expansion Joints for an Oil Company in India	
Single Tied Expansion Joints for an Oil Refinery	115
Immediate Refurbishment of a 3"O.A.L Single Bellows	
Clamshell Bellows for a Shell and Tube Heat Exchanger	
Three-day Emergency Fabrication of a 40" I.D. Expansion Joint	
10" Single Tied Titanium Expansion Joints	
Emergency Order for a 48" Diameter Expansion Joint	116
HINGED EVDANCION IOINTC	
HINGED EXPANSION JOINTS	116
66" Hinged Expansion Joint Designed for Gas Service	
24" Universal Hinged Expansion Joint	
Hinged and Universal Expansion Joints with Refractory Lining	
46 Diameter Refractory Linea Expansion Joint	11/
PRESSURE BALANCED EXPANSION JOINTS	
24" In-line Pressure Balanced Expansion Joint	117
26" Diameter Pressure Balanced Elbow Expansion Joint	
60" Diameter Universal Pressure Balanced Elbow Expansion Joint	118
8" Diameter Pressure Balanced Expansion Joint	
Elbow Pressure Balanced Expansion Joints for a Power Station in Canada	
72" Universal Pressure Balanced Expansion Joint	
72 Offiversal Fressale Balancea Expansion Some Immunities Inches	
REFRACTORY LINED EXPANSION JOINTS	
30" Spent Catalyst Standpipe Metallic Expansion Joint	119
80" Refractory Lined Tied Universal Expansion Joint	
60" Diameter Tied Refractory Lined Universal Expansion Joints	
60" Diameter Double Hinged Refractory Lined Expansion Joint	
55" O.D. Refractory Lined Universal Gimbal Expansion Joint	
44" Universal Refractory Lined Expansion Joint	
Stainless Steel Expansion Joint for Catalytic Cracker Application	120
,	
TOROIDAL EXPANSION JOINTS	
92" I.D. Toroidal Bellow Expansion Joint	120
THICK-WALL EXPANSION JOINTS	
48" Diameter, Thick-Wall Expansion Joint for a Refinery	
5'x 22'Thick-Wall Tied Universal Expansion Joint	
72" Diameter Thick-Wall Expansion Joint	
12' Diameter Thick-Wall Duct Expansion Joint	
Thick-Wall Expansion Joints for Texas Refinery	
Thick-Wall Expansion Joint	122
FABRIC EXPANSION JOINTS	
Rectangular Fabric Expansion Joint	
36" x 10" Face-to-Face Fabric Expansion Joints	122

PRODUCT SHOWCASE INDEX

DESCRIPTION

FABRIC EXPANSION JOINTS	
60" Ductwork and a Fabric Expansion Joint	123
3 Fabric Expansion Joints for a Power Company in Texas	
17 Fabric Expansion Joints for a Gas Turbine Power Plant	
48 Multi-Layer High Temperature Rectangular Fabric Expansion Joints	
54" x 136" Fabric Expansion Joints	
Fabric Expansion Joints for Power System Company in Texas	
78" x 39" Rectangular Fabric Expansion Joint	
5" x 12" Fabric Expansion Joint	
Rectangular Fabric Expansion Joint for Coal Fired Power Plant	
87 Fabric Expansion Joints for a Furnace Application	
Fabric Expansion Joints Up to 32' x 12'	
Fabric Expansion Joint for Duct System	
Replacement Fabric Expansion Joint for a Methanol Plant	
High-Temp Fabric Expansion Joint	
Trigit-terrip t abite Expansion 30itt	120
RECTANGULAR METALLIC EXPANSION JOINTS	
84" Long Rectangular Metallic Expansion Joint	126
55' Long by 14'6" Rectangular Metal Expansion Joint	
Tandem Rectangular Expansion Joint for Turbine Exhaust	
57" x 96" Rectangular Seal Expansion Joints	
Three 12'x 8' Rectangular Expansion Joints with Full Radius Corners	
28"x 66" Rectangular Expansion Joint	128
UNIVERSAL EXPANSION JOINTS	
48"Tied Universal Expansion Joint with Two-ply Bellows	
Tied Universal Expansion Joint with a 45 Degree Mitered Elbow	
66" Diameter Tied Universal Expansion Joint	
15'Tied Universal Expansion Joint with Slotted Hinges	
Metallic Universal Expansion Joint for an Emergency Shut Down	
Expansion Joints for an Engineering and Construction Company	
5,165 lb. Tied Universal Expansion Joint	
48" Diameter Tied Universal Expansion Joints	
3,212 lb. Tied Universal Joint for an Oil Piping System	
6" Diameter Tied Universal Expansion Joints	
Three 23' – 1/3" Expansion Joints for a Refinery in New Jersey Expansion Joint Exhaust Assembly for an Oil Refinery in Texas	
Tied Universal Expansion Joints for a Chemical Plant	
54" Diameter Tied Universal Expansion Joint	
28" and 32" Tied Universal Expansion Joints	
Elbow Tied Universal Expansion Joints	
47 ¼" I.D. Universal Expansion Joint	
3" NPS Tied Universal Bellows for A Power Plant	
GIMBAL EXPANSION JOINTS	
5" O.D. Universal Gimbal Expansion Joint with Floating Rings	133
192" Double Gimbal Expansion Joints	133
36" Expansion Joints for a Company in Singapore	133
EXTERNALLY PRESSURIZED EXPANSION JOINTS	
Specially Designed Expansion Joints with 13" of Movement	133
RUBBER EXPANSION JOINTS	
59" Neoprene Expansion Joint	121
Two Expansion Joints for an Air Intake on a Generator Unit	
42" I.D. Rubber Expansion Joints	
EPDM Tied Expansion Joints for a Construction Company	
Et Dirt fred Expansion some for a construction company	134

INTRODUCTION TO EXPANSION JOINTS

U.S. Bellows has designed and manufactured a variety of expansion joints since the 1960's. In 1995, U.S. Bellows' parent company, Piping Technology and Products, purchased the metal expansion joint business of RM Engineered Products, in Ladson, South Carolina. This acquisition has significantly increased our manufacturing capabilities since we can now produce the bellows components required for many piping system applications.

This catalog is devoted to expansion joints and related products. There are five sections covering the classes of expansion joints including four sections on metal joints and one on fabric joints. The last section includes related items such as dampers and duct work. The four classes of metal expansion joints considered are; (1) those which use round thin metal bellows, (2) those which are fabricated from thin metals in a rectangular shape, (3) those which are fabricated from thicker metals for specific applications, (4) slip-type designed for large axial movement. Rubber expansion joints are not included.

In addition to manufacturing expansion joints, U.S. Bellows, Inc. can assist in design of units to meet your specific needs. We will also build and test prototypes prior to final production. We have the latest computer software to speed the design process when standard products do not meet your specific requirements.

In many cases you are simply replacing an existing joint which has performed for its expected life. We may suggest that you consider alternatives which based on our experience would be cost-effective. Our production and inventory systems will support timely manufacture of replacements at a competitive price.

The parameters which govern the specification of an expansion joint include the temperatures and pressures of the materials flowing in the system (solids, liquids, gases and combinations of these), the mechanical linkage to the system where they are installed, and the movement and forces the system

will exert on the expansion joint. Each section of this catalog provides information about the parameters to be selected to order the expansion joint you require.

Facilities

In 1995 we added a new 101,000 square feet building to our manufacturing facility. The expansion joint equipment obtained from RM Engineered Products is located in the Southeast part of this building. A new crane way has been installed in this area 21 feet above the floor. Structural components for fabric expansion joints and slip-type joints are fabricated in the Sweco Fab area. A Beatty Quickwork Head Shear, with Circle Cutting Attachment, is used for Thick-Wall joints. Special sewing machines are used to produce the fabric components required.

Aerial View of U.S. Bellows / PT&P Facility

From Left to Right: Randy Bailey - Vice President; Dr. Durga Agrawal - President; John T. Demusz - U.S. Bellows Manager

MANUFACTURING CAPABILITIES

Metal Forming

- Hydraulic shears to handle 10 foot plate up to 1 inch mild steel.
- Break presses to handle 14 foot plate up to 3/4 inch mild steel.
- Miscellaneous forming, cutting and punching machines including a 50-ton Mubea ironworker, a 75-ton Scotchman hydraulic ironworker and a 100-ton mechanical machine.
- ◆ Two pyramid plate rollers handle 10 foot plate up to 5/8 inch.
- ♦ 350-ton radial expander.
- ♦ Angle rolling to diameters in excess of 12 feet.
- ♦ Plasma cutting up to 2 inch.
- ♦ Flame cutting 8 torch, computer controlled.
- ♦ Horizontal and vertical band saws.

Bellows Forming

- Roll forming from 24 inches through 15 feet diameter.
- Expanding mandrel forming from 2 inches through 120 inch diameter.
- ♦ Automatic TIG flat bed welders.
- ♦ Bellows reroll and planishing machines.

Machining

- ♦ End Mill Machine 36 inch travel.
- Bridgeport Machine Lateral boring to 6 inch diameter and milling with a tilt head on a 36 inch bed.
- ◆ Drill presses with 48 inch bed height.
- ♦ Surface tables.

Phone: 713-731-0030

 General ability to mill, grind, turn, tap, thread, bore and chamfer material up to 12 inches in diameter and 36 inches in length.

WELDING

- ◆ TIG
- ♦ MIG (Pulse Arc)
- ♦ SMAW
- **♦ SUB-ARC**
- **♦** Aluminum

MATERIALS

- ♦ Carbon Steel
- **♦** Stainless
- ♦ Alloy Steel
- ♦ High nickel alloys
- **♦** Aluminum

OUALIFICATIONS

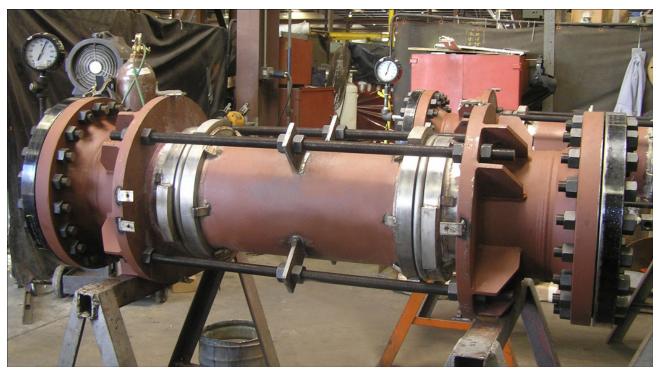
- ♦ ASME Section IX
- ♦ AWS D1.1
- ♦ MIL-STD-248

NON-DESTRUCTIVE EXAMINATION

- ♦ Magnetic particle --dry method.
- ♦ Liquid penetrant --visible and fluorescent.
- ♦ Ultrasonic and radiography --subcontracted.
- ♦ Hydrostatic testing and Pneumatic testing

QUALITY STANDARDS

Sweco Fab, Inc. has an ASME U stamp and R stamp for pressure vessels.


Our quality assurance and quality control practices are designed to meet the following codes and standards as applicable:

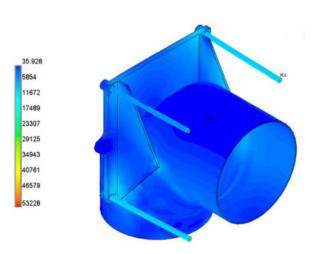
ASME Section VIII	ANSI B31.3	ANSI B31.1
API 620	AISI	AISC
MII -O-9858A	MII-STD-276	MII -STD-271

MIL-STD-410 AMCA DNMEJ (FSA)

EJMA

View our online catalog at: www.usbellows.com/catalog

A hydro test is being performed on a universal metallic expansion joint. The bellows are pressurized for 30 minutes to proof test the design.


AERIAL VIEW

U.S. Bellows, Inc., along with its parent company Piping Technology & Products, Inc. and fellow subsidiaries, share engineering and manufacturing resources at our 35-acre manufacturing facility in Houston, Texas. U.S. Bellows' manufacturing facilities are located near the Port of Houston, the largest port in the United States, for fast and convenient shipping around the world. We have 450,000 square feet of covered shop space at our manufacturing facility in Houston.

U.S. Bellows extends an invitation to all its customers to come to Houston and visit the plant. This is the best way to see our people, our facilities, and the many capabilities we have to serve your needs.

Pressure Balanced Metallic Expansion Joints During Fabrication in the U.S. Bellows Shop

Finite Element Depiction Of A 36" Tied Universal Expansion Joint to Verify the Design

THE BELLOWS

Bellows Design

The bellows is the flexible element of the expansion joint. It must be strong enough circumferentially to withstand the pressure and flexible enough longitudinally to accept the deflections for which it was designed, and as repetitively as necessary with a minimum resistance. This strength with flexibility is a unique design problem that is not often found in other components in industrial equipment.

Most engineered structures are designed to inhibit deflection when acted upon by outside forces. Since the bellows must accept deflections repetitively, and deflections result in stresses, these stresses must be kept as low as possible so that the repeated deflections will not result in premature fatigue failures. Reducing bending stress resulting from a given deflection is easily achieved by simply reducing the thickness of the bending member, which in the case of the bellows, is the convolution.

However, in order to withstand the pressure, the convolution, which is also a pressure vessel, must have a thickness great enough that the pressure induced membrane stresses are equal to or less than the allowable stress levels of the materials at the design temperatures. This conflicting need for thickness for pressure and thinness for flexibility is the unique design problem faced by the expansion joint designer.

Bellows are not springs, in that most of their deflections produce bending stresses in excess of the materials' yield strength. Understanding how various materials perform and their capabilities in this "plastic" deformation region requires years of experience and design equations based upon this empirical understanding.

That bellows routinely operate "plastically" should not be a cause for concern, since most of the materials from which bellows are made share similar highly ductile characteristics. In particular, the endurance limit of these materials, which can be loosely described as the stress at which failure will occur at ten million cycles of repeated stressing, is nearly the same as their yield stress, or the point at which permanent deformation will occur. A bellows which is required to withstand 3000 cycles of a given deflection and pressure, and which ultimately fails after 10,000 cycles, has certainly demonstrated more than acceptable performance. However, it has experienced, during each and every cycle, bending stresses far in excess of the endurance limit and therefore the yield stress, and once deflected, would not have returned on their own to their original undeflected length or shape, as a spring is expected to do. In other words, they would have "taken a set."

Most bellows fail by circumferential cracking resulting from cyclic bending stresses, or fatigue. Since the best design is a compromise, or balance, between pressure strength and flexibility considerations, it can be concluded that their designs have had lower margins of safety regarding fatigue than they had regarding pressure strength. The years of experience of the engineers who developed these bellows assures that the designs contained in this catalog and those offered to satisfy customer specifications, will have the performance reliability which yields trouble free, safe use.

Occasionally, a bellows will appear to develop a fatigue crack prematurely, i.e., after being subjected to fewer cycles than analysis indicates they should. These premature failures usually are the result of one or more of the following causes:

♦ Insufficient margin of safety in the design permitting acceptance of a unit manufactured within a portion of the dimensional tolerance range to yield a part which will not satisfy the design - Metallic bellows bending stresses are extremely sensitive to changes in some dimensions, such as the thickness and the height of the convolution. These dimensional characteristics often affect the various bending stresses by the square or cube of their differences. An understanding of these dimensional factors and how they can be controlled during design and manufacture is the key to preventing this cause of early failure. A poorly manufactured bellows, or one that is made to the "wrong" side of the dimensional tolerances will disappoint the best design and analysis.

♦ Insufficient margin of safety regarding stability under pressure - Squirm, described in more detail below, is a characteristic of all bellows subjected to internal pressure. Each bellows has a critical pressure at which the convolution side walls begin to deform or the actual bellows shape begins to change. These deformations cause the bellows to accept the imposed deflections differently than they are normally expected to and they can no longer perform according to the design equations. The critical pressure is a function of the bellows' shape and actually can change during deflection. If the basic design is close to its stability limit, the beginnings of instability may not be visible to the eye, but the higher than expected bending stresses will occur during each cycle. Stresses are higher particularly at convolutions near its attachments where the flexible element transitions to the highly rigid end connection.

SOUIRM OR INSTABILITY

As described above, all bellows have a critical pressure at which they become unstable. Instability can occur in either of two modes, column instability (or squirm), or inplane deformation of the convolution side wall.

Squirm is the phenomena whereby the centerline of a straight bellows develops a sideways or lateral bow.

The critical pressure at which this instability occurs is a direct function of the diameter and spring rate, and an inverse function of the length. If the bellows is bent, or angulated, the centerline can begin to move away from the center of curvature. In each case, the effective length of the bellows increases, lowering the material available to withstand the pressure, thereby increasing the hoop stresses. As the length increases, the tendency to squirm increases and the stresses become higher and higher until catastrophic failure occurs. A simple way to visualize this phenomena is to remember that the bellows is a cylinder of given volume. Internal pressure tries to increase a vessel's volume. Since a bellows is flexible in the axial direction, it can increase its volume by increasing the length of its centerline. With the ends fixed, it does so by simulating the appearance of a buckling column.

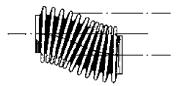
TYPE OF DEFLECTIONS

In order to properly apply expansion joints to piping systems, it is necessary that both the piping specialist and the expansion joint designer each understand not only how the piping flexes, but how the various expansion joint types function and what they are capable of doing. It may be relatively easy to visualize that deflections may result from thermal expansion or the movements and vibrations of equipment and structures; however, all expansion joints do not accept the same types of deflection. Many can accept certain loads and moments, while others are incapable of resisting externally applied forces. Understanding the type, magnitude, and direction of these forces and deflections is critical, not only to the safety of the system, but to its cost.

With today's piping flexibility computer programs, determining where stresses are excessive, and therefore that expansion joints may be necessary, is a simple task. The placement of expansion joints, and their proper selection, still depends upon the designer's experience and understanding of how expansion joints work, and how the piping must be anchored and supported when expansion joints are used. This section describes the different types of expansion joints available, how they function, what types of deflections they can accept, and what types of forces and movements they can and cannot resist.

To aid in the explanations the following description of the types of movements are given.

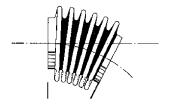
Axial Deflection



Axial refers to being parallel to the centerline of the expansion joint. COMPRESSION is the AXIAL deflection which will shorten the bellows length. Often confusion occurs because thermal EXPANSION in the piping will cause the expansion joint to be compressed. The specification for an expansion joint should always state the movements as they affect the expansion joint, and not as they are produced by the system. EXTENSION is the AXIAL deflection which stretches the expansion joint. Piping which is operating at temperatures lower than ambient, such as in cryogenic systems, will contract, causing the expansion joint to stretch or experience EXTENSION.

View our online catalog section for deflections at: www.usbellows.com/deflections

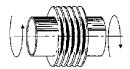
Lateral Deflection



Lateral refers to the direction perpendicular to the centerline of the expansion joint (in any plane). Other terms for this deflection are PARALLEL OFFSET and TRANSVERSE. This movement occurs with both of the ends of the expansion joint remaining parallel to each other, with their centerlines being displaced, or no longer coincident. When analyzing the deflections in a piping system, it is not uncommon to find that different lateral deflections can occur in more than one plane. Since an expansion joint is round, these various deflections must be resolved into a single resultant lateral deflection, in order for the bellows to be properly selected in terms of the rated LATERAL DEFLECTION shown in this catalog. The magnitude of the resultant LATERAL DEFLECTION is the square root of the sum of the squares of the individual deflections. The planes of the various deflections must also be clearly understood if the expansion joint is to contain structural components such as hinges, which may inhibit movements in certain directions, and if the individual deflections can occur separately during the life of the expansion joint.

Elbow Pressure Balanced Expansion Joints

Angular Deflection



When an expansion joint experiences bending about its center, which is on the centerline and halfway between the ends of the bellows, this deflection is referred to as ANGULAR. It can occur in any plane that passes through the centerline, but the plane should be clearly indicated if the expansion joint is more complicated than the simplest type, i.e., only a bellows with flanges or pipe ends. As in lateral movements, piping analyses may reveal angular deflections occurring in more than one plane. With ANGULAR DEFLECTION, the basis for the proper selection is the maximum of the various deflections, and not the vector sum as in the lateral case. Multiple ANGULAR DEFLECTIONS in multiple planes produce a single ANGULAR DEFLECTION in a single resultant plane. As in lateral deflection, this plane must be understood if structural components are to be used.

12" Universal Metallic Expansion Joint

Torsional Deflection

Torsion refers to twisting one end of the bellows with respect to the other end, about the bellows centerline. Expansion joints are not normally expected to accept torsional deflection, since the bellows is essentially inflexible in this direction. The piping designer should carefully provide the system with restraints so that the expansion joint is not expected to accept TORSIONAL DEFLECTION. This catalog contains the calculated torsional spring rate for each expansion joint so that piping designers and analysts can provide the proper inputs for piping flexibility computer programs. If it is not possible or economically practical to relieve the expansion joint of excessive torsional loading, then U.S. Bellows' designers can provide anti-torsion features to the expansion joints which prevent these loads from damaging the bellows elements.

Combined Deflections

Very often an expansion joint must accept a combination of some or all of the above deflections, most often because of space limitations in the system. In order to clearly understand whether the proper expansion joint is selected, the movements should, if possible, be broken down into the above various types and stated that way in the specification. Then U.S. Bellows' expansion joint designer will confirm that the offered expansion joint can accept each of these types of movements, when combined. Most catalogs, including this one, give the movement capability of each expansion joint in an uncombined form, or "non-concurrent."

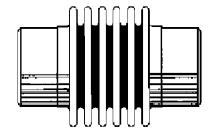
Page 43 of this catalog shows the method by which various movements should be combined when determining a single equivalent deflection which can then be used for the proper expansion joint selection.

Cyclic Deflections And Cycle Life

Most deflections are repeated a number of times during the life of the piping system, since the deflections usually are produced by changes in temperature which occur each time the system is started and stopped, and from predictable variations in the way the system is used. Repetitions can also occur as a result of repetitive mechanical movements and from vibrations. Each time a deflection occurs it is a CYCLE. The number of cycles is important to assure the proper design of the expansion joint, since each design has a finite, but predictable life. Vibrations which cause repetitive deflections can cause a premature failure of an expansion joint. Even though these deflections may be small in magnitude, they usually accumulate huge numbers of cycles in a short period of time. Since the bellows are metallic structures, they have specific and predictable resonant frequencies, like the pitch of a tuning fork. When driven by outside vibrations of the same frequencies (or harmonics of them), they can magnify the incoming deflections until they exceed the yield strength of the bellows material and induce early fatigue failure. When a piping system is known to have equipment which can produce vibrations, such as pumps, fans, and other motor or turbine driven devices, their rotational speeds or frequencies should be stated so that designers can assure that the proper expansion joint does not have a resonant or harmonic frequency that is close to those.

INSTALLATION MISALIGNMENT

During the erection of piping systems, the accuracy of the location of equipment, pipe supports, structure and the piping itself is never perfect. Since the expansion joint is usually far more easily deflected than any of these other components, it is tempting for piping installers to use it to correct for misalignment. The installation instructions of U.S. Bellows' expansion joints, as well as other manufacturers, require that the piping be aligned to the expansion joint during installation. The expansion joints will arrive from the factory with rigid restraints which maintain their length and ends in the position and dimensions of the specification in this catalog.

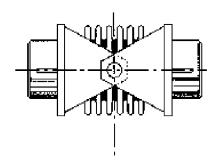

If some misalignment must be accepted by the expansion joint, this can be accommodated by the addition of devices such as limit rods which can be used during the installation to adjust the expansion joints to fit. Any proposed misalignment should be clearly stated to U.S. Bellows so that the amount of deflection possible can be considered in the total deflection capability of the proper selection. As an example, one would not want to have a needed cyclic axial compression capability of 0.5 inch (12.7 mm) cut in half by a compression due to pipe misalignment of .025 inch (6.4 mm).

TYPES AND DESIGN STYLES

U.S. Bellows offers all of the types of metal expansion joints. Each type has advantages and limitations, which when applied correctly, can provide the flexibility, load reduction, structural integrity and reliability desired in a piping system.

Expansion joints, besides acting as sections of a pipe, capable of withstanding the design temperatures, pressures, and media, also provide the flexibility that makes them necessary. That flexibility can be axial, lateral or angular. However, in many installations, some rigidity or structural strength is needed to support piping loads or to control the motion of the bellows and the pipe. Features are then added to the expansion joint to limit the modes or degrees of freedom, or the types of deflections, and to resist shear, or tension, or compression loads and/or bending moments. The most common types are presented in this catalog. This section describes how they work, in what ways they are flexible, and what piping applied loads and moments they can accept. The section entitled Applications contains discussions and examples of how various types of expansion joints can be used to solve piping expansion problems.

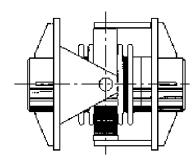
Single Bellows (U.S. Bellows' Style S)



This expansion joint is simply a bellows element with end connections. Regardless of accessories, such as liners and covers, it will deflect in any direction or plane that the bellows will. It is the least expensive type, but requires that the piping be controlled as to the direction of the movements required of the unit.

View online catalog section for single expansion joints: www.usbellows.com/single

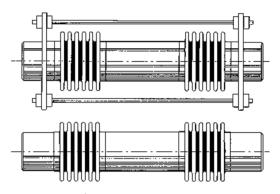
The expansion joint should not be expected to control the movement of the pipe. If the piping analysis shows that the expansion joint must accept axial compression, then the piping must be guided and constrained so that only that movement will occur. This expansion joint will not resist any deflections with any force other than the resistance of the bellows, which is a function of the spring rate times the deflection amount. It is incapable of resisting the pressure thrust along its axis, which is the product of the pressure times the effective, or cross sectional, area of the bellows. Large diameter units, even with low pressures, can generate very large axial pressure thrust forces, which must be reacted by main and directional anchors. Otherwise the expansion joint will extend with disastrous results.


Hinged Expansion Joints (U.S. Bellows' Style H)

These expansion joints contain hinges or pivots which cause the unit to bend in a single plane. Normally these units are prevented by their design from deflecting axially, either in extension or compression. Their hinge mechanisms are usually designed to accept the full pressure thrust. Also, because of the hinge mechanism's design, shear loads, such as from the weight of adjacent piping, can be accepted by this expansion joint, relieving the piping designer of having to provide additional supports and anchors required by the single type.

Some hinge types can be provided with hinge pin holes which are slotted to permit limited axial travel. These "slotted hinge" types will not resist pressure thrust forces, and anchoring must be provided. This catalog only depicts the fully restrained hinged type. If axial travel is desired, the piping designer should clearly state that the slotted hinge type is wanted in the design requirements, and they should provide for pressure thrust anchoring. On the other hand, if the full axial restraint of the hinged type is desired, the piping designer should understand that there is no allowance in the expansion joint for any axial travel, including none for any installation misalignment.

Gimbal Expansion Joints (U.S. Bellows' Style G)


The gimbal expansion joint is basically the same as the hinge type, except that instead of being limited to deflection in only one plane, it can accept bending or angulation in any plane. It contains two sets of hinge pins or pivots, the axis of each set perpendicular to the other. Each set of pins is connected to each other with a central gimbal ring, in much the same way that a universal joint on an automobile works.

This unit provides the same type of restraint and resistance to axial forces, such as the pressure thrust, and to shear forces as the hinge type.

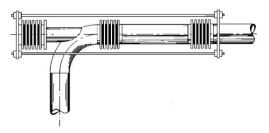
View online catalog section for gimbal expansion joints: www.usbellows.com/gimbal

<u>UNIVERSAL EXPANSION JOINTS</u> (U.S. BELLOWS' STYLE U)

The universal expansion joint consists of two bellows separated by a pipe section or spool. The primary purpose of this arrangement is to have a unit which will accept large amounts of lateral deflection. The amount of lateral deflection they can accept is a function of the amount of angulation each bellows can absorb and the distance between the bellows. For a given bellows element, the amount of lateral deflection capability can be increased or decreased by simply changing the length of the center spool. In this catalog three standard overall lengths are given with their lateral movement capability. If the piping problem requires greater capability, then the overall length can be increased to suit.

Since deflections are usually the result of piping thermal expansion, and universal expansion joints are usually long, our units are designed so that the thermal expansion of the entire unit's length is accepted as compression by the two bellows elements. In this way, the overall length of the unit does not change when the piping is heated. The standard units in this catalog have all been designed to accept the thermal expansion of their length when the temperature is up to the design temperature shown.

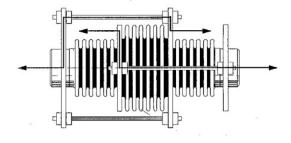
Universal types can be supplied with or without tie rods. Tie rods connect the ends of the unit to each other and restrain the pressure thrust load. This unit is normally not expected to accept any externally applied axial deflections. The thermal expansion of the distance between the tie rods ---within the expansion joint--- will be handled by the bellows element, as described above. The tie rods usually come in sets of two or more, equally distributed around the circumference of the expansion joint. When only two are provided, 180 degrees apart, the expansion joint is free to bend, or deflect angularly, as well as laterally. With three or more tie rods, since rods are loaded equally by the pressure thrust, only lateral deflections are possible without significant forces being applied by the adjacent piping. Without tie rods, the universal expansion joint will accept all of the deflections that a single type will, and the pipe guiding and anchoring needs discussed for the single type above also apply.



Universal Metallic Expansion Joints

View online catalog section for universal expansion joints: www.usbellows.com/universal

Many times the universal expansion joints will be attached directly to pipe elbows as shown on page 12. As discussed in more detail in the Applications section, this arrangement, because of the large lateral deflection capability, accepts the thermal expansion of relatively long runs of heated pipe. So that the distance between the elbows does not change due to thermal expansion, the tie rods can be connected to the elbows themselves. This catalog offers this type of arrangement as one of the standards, and can be seen on each of the universal expansion joint pages, along with their dimensions and performance characteristics.


Pressure Balanced Elbow Expansion Joints (U.S. Bellows' Style PBE)

This type of expansion joint is really a combination of some of the above types. Its purpose is to retain and balance the pressure thrust so that main anchoring of the pipe or adjacent equipment is not required, and forces and movements on attachment flanges of delicate equipment, such as turbines, are kept to acceptably low levels. Briefly, the deflections to be accepted are handled by the proper type of expansion joint, which normally, and as shown in the above sketch, is a tied universal type to accept lateral movements. However, the pressure balanced elbow is usually required because axial deflections are also present. In order to accept these

movements, a bellows is added beyond the elbow with the same cross-sectional area as the ones in the universal section. This balancing bellows is connected by the tie rods to the pipe beyond the universal section; in this way the pressure thrust is contained as tension in the tie rods. The section of the expansion joint between the tie rods, which includes the elbow, is now free to move axially, with the only resistance being a function of the spring rates of the bellows. Because of their arrangement, however, the spring rate of the entire expansion joint is the sum of the spring rates of the balancing and the universal bellows. This is a constant volume system, in that when the universal end compresses, the balancing end extends the same amount. All of the lateral deflection is absorbed by the universal end, and there is no lateral deflection imposed on the balancing end. Therefore, the balancing bellows is almost always a single bellows type.

In-Line Pressure Balanced Expansion Joints (U.S. Bellows' Style IPB)

When axial deflections exist, and anchoring is impractical for structural or economic reasons, such as high in the air or short straight pipe runs between two large vessels, the in-line pressure balanced expansion joint is a powerful solution to a difficult design problem.

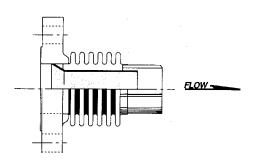
View online catalog section for in-line pressure balanced expansion joints: www.usbellows.com/inline

The principle of this type of unit is essentially the same as the pressure balanced elbow type, in that the axial pressure thrust is reacted by the pressure acting on a cross-sectional area equal to the area of the working or primary bellows. Since this unit is entirely axial, and there are no directional changes in the pipe, such as with the elbow in the previous discussion, the cross-sectional area needed to balance the pressure is placed around the outside of the unit. Since the pressure forces are generated by the pressure acting on the annular surface between the primary and outer, or balancing bellows, the arrangement of the tie rods transfers and balances the pressure thrust created in the pipe on each end. Now the forces needed to compress or extend the unit are only the result of the spring resistance of the bellows, and main anchoring of the pipe or vessels is not required. This expansion joint is obviously more expensive than the simpler types described earlier; however, they may result in a lower overall system cost when the elimination of main anchoring is considered. This expansion joint can also be used to replace pipe loops, and its cost advantage may be seen in reduced pumping energy by the elimination of the loop's elbow-generated pressure losses. This may also allow reducing the pipe size for the entire system.

Externally Pressurized Expansion Joints (U.S. Bellows' Style X-Flex)

14" I.D. In-line Pressure Balanced Expansion Joint

When large amounts of axial deflection are required in piping systems of relatively high pressure, bellows which are internally pressurized have limitations due to the phenomenon called squirm. The X-Flex type expansion joint, in which the bellows elements are arranged so that they are exposed to the media on their external surface, and are therefore externally pressurized, is an ideal unit. As discussed in more detail in the X-Flex section of this catalog, externally pressurizing a bellows eliminates squirm as a limitation to the design and permits the safe acceptance of large amounts of axial thermal expansion. This type of expansion joint has many other inherent advantages over internally pressurized bellows. Please refer to the Safety Recommendation section as well as the X-Flex discussion.



Externally Pressurized Expansion Joints

ACCESSORIES

The metallic bellows is by necessity one of the thinnest pressure-carrying components in the piping system. U.S. Bellows offers as optional accessories a series of devices designed to protect the bellows element. Each of the single expansion joint pages shows the accessories that can be specified as standard additions to each expansion joint. The individual bellows elements in the universal expansion joint series can also have these accessories provided. This section describes the accessories and their benefits. The How-to-Order section of each series describes how to specify accessories when ordering a U.S. Bellows standard part number.

Internal Liner (L)

Internal liners or baffles are a recommended accessory to extend the life of many metallic expansion joints because of their ability to protect the convolutions from direct flow impingement, which can cause erosion and flow-induced vibration. Internal liners should be used when internal flow conditions exceed the following criteria:

 Internal sleeves shall be specified for all expansion joints, regardless of the metal of the bellows in the following cases:

• Where it is necessary to hold friction losses to a minimum and smooth flow is desired. Where flow velocities are high and could produce resonant vibration of the bellows. Sleeves are recommended when flow velocities exceed the following values:

Air, Steam and other Gases

- 1) up to 6-inch dia. 4 ft/sec per inch of dia.
- 2) over 6-inch dia. 25 ft/sec.

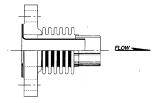
Water and other Liquids

- 1) up to 6-inch dia. 1-2/3 ft/sec per inch of dia.
- 2) over 6-inch dia. 10 ft/sec.

When turbulent flow is generated within ten pipe diameters of the expansion joint by changes in flow direction, valves, tee or elbow sections, cyclic devices, etc., the actual flow velocity should be multiplied by four prior to utilizing the criteria of *The Standards of the Expansion Joint Manufacturers Association* Sections C-3.1.2 and C-3.1.4.

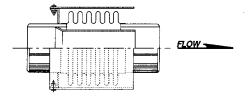
- Where there is a possibility of erosion, such as in lines carrying catalyst or other abrasive media, heavy gauge sleeves should be used. At no time should the relatively thin bellows be directly exposed to erosion.
- Where there is reverse flow, heavy gauge sleeves may be required.
- ◆ For high temperature applications to decrease the temperature of the bellows, heavy gauge sleeves may be required. (To obtain a maximum effect, the expansion joint should not be externally insulated.)

View online catalog section for expansion joint accessories: www.usbellows.com/accessories



◆ Internal sleeves should not be used where high viscosity fluids such as tars, etc., are being transmitted, since these fluids may cause "packing up," "coking" and "caking" which, in turn, may cause premature expansion joint failure. Where the fluid is such that purging will effectively prevent the "packing up," internal sleeves may be used in conjunction with purge connections.

The standard U.S. Bellows internal liner is made of 300 Series stainless steel. If corrosion or temperature considerations dictate, the liner can be made of the same material specified for the bellows.

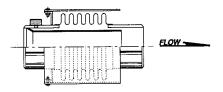

The liner is a longitudinally welded tube attached at one end to the upstream end connection. The diameter of the liner is small enough that the free, downstream end will not interfere or contact the downstream end connection during lateral or angular deflections. When a standard expansion joint is selected from this catalog with the internal liner accessory, the expected lateral deflection should be stated so that the liner diameter can be properly sized.

If expected flow rates will be very high, such as at steam safety relief valves or in turbine exhaust and extraction steam applications, the internal liner should be of heavier construction. Usually, the liner material can be the same as the system pipe material, such as carbon steel, with liner thickness' of 1/8-inch and greater depending upon flow rate and diameter.

Internal liners are almost always welded into the expansion joint. However, if the Van-Stone flange end connection is specified, the U.S. Bellows liner will have its own flange and will be captured between the flanges at the upstream connection into the piping.

Protective Cover (C)

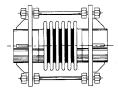
Being relatively thin, the bellows element should be protected on the outside from damage during plant construction and later maintenance activities. Falling tools, standing on the bellows, contact with pipes, hangers and equipment, and weld and burning spatter can render a bellows unsafe or unusable. U.S. Bellows offers, as an accessory, standard carbon steel removable covers attached to the upstream end connection, and sized to permit free flexing of the expansion joint.


In certain applications where fluids can impurge on the bellows exterior, such as in steam extraction piping in turbine exhaust systems, special thick wall, welded type covers should be specified.

Installation of a Protective Cover on an Expansion Joint

Purge Connector (P)

In systems where sediments can collect between the outside of the internal liner and the inside of the bellows element, a threaded purge connector can be added to the upstream end connection as shown. Clear gas or liquid can be injected to periodically blow collected material out, or can be continuously supplied during system operation.



Single Metallic Expansion Joint with Two Limit Rods

Rectangular Metallic Expansion Joint with Protective Covers

Limit Rods (LR)

It is sometimes desirable to limit the axial expansion or compression of the expansion joint. Limit rods, shown above, provide freedom of movement over a range determined by the location of nut stops along the rods. In the event of a main anchor failure, limit rods are designed to prevent bellows over-extension while restraining the full pressure thrust of the system.

Universal Metallic Expansion Joints with Limit Rods

48" Universal Expansion Joints with Protective Covers

GLOSSARY OF TERMS

U.S. Bellows, Inc. has adopted and encourages the use of the definitions of expansion joint components and related equipment as published by *The Expansion Joint Manufacturers Association*. The definitions are taken, in part, from the Fifth Edition of the EJMA Standards.

ANCHOR, DIRECTIONAL. A directional or sliding anchor, is one which is designed to absorb loading in one direction while permitting motion in another. It may be either a main or intermediate anchor, depending upon the application involved. When designed for this purpose, a directional anchor may also function as a pipe alignment guide. In the design of a directional anchor, an effort should be made to minimize the friction between its moving or sliding parts, since this will reduce the loading on the piping and equipment and insure proper functioning of the anchor.

ANCHOR, INTERMEDIATE. An intermediate anchor is one which must withstand the bellows thrust due to flow, spring forces, etc., but not the thrust due to pressure.

ANCHOR, MAIN. A main anchor is one which must withstand the full bellows thrust due to pressure, flow, spring forces, etc.

BELLOWS. The flexible element of an expansion joint consisting of one or more convolutions and the end tangents, if any.

control rod. Devices, usually in the form of rods or bars, attached to the expansion joint assembly whose primary function is to distribute movement between the two bellows of a universal expansion joint. Control rods are not designed to restrain pressure thrusts.

CONVOLUTION. The smallest flexible unit of a bellows. The total movement capacity of a bellows is proportional to the number of convolutions.

COVER. A device used to provide limited protection of the exterior surface of the bellows of an expansion joint from foreign objects or mechanical damage. A cover is sometimes referred to as a shroud.

expansion joint consists of two bellows joined by a common connector which is anchored to some rigid part on the installation by means of an anchor base. The anchor base may be attached to the common connector either at installation or at time of manufacture. Each bellows acts as a single expansion joint and absorbs the movement of the pipe section in which it is installed, independently of the other bellows. Double expansion joints should not be confused with universal expansion joints.

EQUALIZING AND REINFORCING RING. Devices used on some expansion joints fitting snugly in the roots of the convolutions. The primary purpose of these devices is to reinforce the bellows against internal pressure. Equalizing rings are made of cast iron, carbon steel, stainless steel or other suitable alloys and are approximately "T" shaped in cross section. Reinforcing rings are fabricated from tubing or solid round bars of carbon steel, stainless steel, or other suitable alloys.

A Refurbished 54" Pressure Balanced Elbow Turbine Crossover Expansion Joint Being Shipped

EXPANSION JOINT. Any device containing one or more bellows used to absorb dimensional changes, such as those caused by thermal expansion or contraction of a pipeline, duct, or vessel.

FLANGED ENDS. The ends of an expansion joint equipped with flanges for the purpose of bolting the expansion joint to the mating flanges of adjacent equipment or piping.

GIMBAL EXPANSION JOINT. A gimbal expansion joint is designed to permit angular rotation in any plane by the use of two pairs of hinges affixed to a common floating gimbal ring. The gimbal ring, hinges and pins must be designed to restrain the thrust of the expansion joint due to internal pressure and extraneous forces, where applicable.

expansion joint contains one bellows and is designed to permit angular rotation in one plane only, by the use of a pair of pins through hinge plates attached to the expansion joint ends. The hinges and hinge pins must be designed to restrain the thrust of the expansion joint due to internal pressure and extraneous forces, where applicable. Hinged expansion joints should be used in sets of two or three to function properly.

INTERNAL SLEEVE. A device which minimizes contact between the inner surface of the bellows of an expansion joint and the fluid flowing through it. These devices have also been referred to as liners, telescoping sleeves, etc.

INTERNALLY GUIDED EXPANSION JOINT. An internally guided expansion joint is designed to provide axial guiding within the expansion joint by incorporating a heavy internal guide sleeve, with or without the use of bearing rings. The use of such

expansion joints will assure installation without initial lateral or angular misalignment and can be installed in pipelines where reverse flow will be encountered. NOTE: The use of an internally guided expansion joint does not eliminate the necessity of using adequate external pipe guides.

contains a containing the full pressure loading and dynamic forces generated by a main anchor failure.

PANTOGRAPH LINKAGE. A scissor-like device. A special form of control rod attached to the expansion joint assembly whose primary function is to positively distribute the movement equally between the two bellows of the universal joint throughout its full range of movement. Pantograph linkages, like control rods, are not designed to restrain pressure thrusts.

PIPE ALIGNMENT GUIDE. A pipe alignment guide is a form of framework fastened to some rigid part of the installation which permits the pipeline to move freely along the axis of the pipe. Pipe alignment guides are designed primarily for use in applications involving lateral deflection and angular rotation.

PIPE SECTION. A pipe section is that portion of a pipeline between two anchors. All dimensional changes in a pipe section must be absorbed between these two anchors.

PLANAR PIPE GUIDE. A planar pipe guide is one which permits transverse movement and/or bending of the pipeline in one plane. It is commonly used in applications involving lateral deflection or angular rotation resulting from "L" or "Z" shaped piping configurations.

pressure balanced expansion joint is designed to absorb axial movement and/or lateral deflection while restraining the pressure thrust by means of tie devices interconnecting the flow bellows with an opposed bellows also subjected to line pressure. This type of expansion joint is normally used where a change of direction occurs in a run of piping but can be designed as an in-line device where no change of direction is necessary. The flow end of a pressure balanced expansion joint sometimes contains two bellows separated by a common connector, in which case it is called a universal pressure balanced expansion joint.

PURGE CONNECTION. Purge connections, where required, are usually installed at the sealed end of each internal sleeve of an expansion joint for the purpose of injecting a liquid or gas between the bellows and the internal sleeve to keep the area clear of erosive and corrosive media and/or solids that could pack the convolutions. Purging may be continuous, intermittent or just on start-up or shut-down, as required. These are sometimes called aeration connections.

SHIPPING DEVICE. Rigid support devices installed on an expansion joint to maintain the overall length of the assembly for shipment. These devices may also be used to pre-compress, pre-extend or laterally offset the bellows.

SINGLE EXPANSION JOINT. The simplest form of expansion joint, of single bellows construction, designed to absorb all of the movements of the pipe section in which it is installed.

SWING EXPANSION JOINT. A swing expansion joint is designed to absorb lateral deflection and/ or angular rotation in one plane. Pressure thrust and extraneous forces are restrained by the use of a pair of swing bars, each of which is pinned to the expansion joint ends.

TANGENT. The straight unconvoluted portions at the end of the bellows.

TIE ROD. Devices, usually in the form of rods or bars, attached to the expansion joint assembly whose primary function is to continuously restrain the full pressure thrust during normal operation while permitting only lateral deflection. Angular rotation can be accommodated only if two tie rods are used and located 90 degrees opposed to the direction of rotation.

universal expansion joint is one containing two bellows joined by a common connector for the purpose of absorbing any combination of the three basic movements, i.e. axial movements, lateral deflection, and angular rotation. Universal expansion joints are usually furnished with control rods to distribute the movement between the two bellows of the expansion joint and stabilize the common connector. This definition does not imply that only a universal expansion joint can absorb combined movements.

WELD END. The ends of an expansion joint equipped with pipe suitably beveled for welding to adjacent equipment or piping.

SAFETY RECOMMENDATIONS

U.S. Bellows highly recommends that our customers thoroughly understand the uniqueness of expansion joints and their application. The following safety recommendations are paraphrased from the Fifth Edition of *The Standards of the Expansion Joint Manufacturers Association*, 1980.

SAFETY RECOMMENDATIONS FOR PIPING SYSTEMS CONTAINING BELLOWS EXPANSION JOINTS

Bellows expansion joints are employed in piping systems to absorb differential thermal expansion while containing the system pressure. They are being successfully used in refineries, chemical plants, fossil and nuclear power plants, shipboard applications, heating and cooling systems, pulp and paper plants, and cryogenic plants. Typical service conditions range from pressures of full vacuum to 1,000 psig (70 kg/cm3) and -420F to +1,800 F (-251C to +968 C). Thus, expansion joints must be specified as a highly engineered product. They cannot and should not be purchased and used as commodity items if the expansion joints are to perform their intended function safely and reliably. The system operating requirements, the expansion joint design and manufacturing quality, the installation, test and operating procedures must all be considered for all expansion joint installations.

Unlike most commonly used piping components, a bellows is constructed of relatively thin gauge material in order to provide the flexibility needed to absorb mechanical and thermal movements expected in service. This requires design, manufacturing quality, non-destructive examination, handling, installation and inspection procedures which recognize the

unique nature of this product.

In general, the most reliable and safe bellows expansion joint installations have always involved a high degree of understanding between the user and manufacturer. With this basic concept in mind, the following recommendations are given in order to better inform the user of those factors which many years of experience have shown to be essential for the successful installation and performance of piping systems containing bellows expansion joints.

DESIGN SPECIFICATION

A design specification shall be prepared for each expansion joint application. Prior to writing the expansion joint design specification it is imperative that the system designer completely review the piping system layout, flowing medium, pressure, temperature, movements, and other items which may effect the performance of the expansion joint. Particular attention shall be given to the following items.

◆ The piping system should be reviewed to determine the location and type of expansion joint most suitable for the application. Both the EJMA Standards and most reliable expansion joint manufacturers' catalogs provide numerous examples to assist the user in this effort. The availability of supporting structures for anchoring and guiding of the piping, and the direction and magnitude of thermal movements to be absorbed must be considered when selecting the type and location of the expansion joint. Torsional rotation of the bellows should be avoided or special hardware should be incorporated into the design to limit the amount of torsional shear stress in the bellows.

View online catalog section for safety recommendations: www.usbellows.com/safety

- ◆ The bellows material shall be specified by the user and must be compatible with the flowing medium, the external environment and the operating temperature. Consideration shall be given to possible corrosion and erosion. The 300 Series stainless steels may be subject to chloride ion stress corrosion. High nickel alloys are subject to caustic induced stress corrosion. The presence of sulfur may also be detrimental to nickel alloys. The material chosen shall also be compatible with the environment surrounding the expansion joint, water treatment and cleaning materials. In some cases, leaching of corrodents from insulating materials can be a source of corrosion.
- Internal sleeves shall be specified in all applications involving flow velocities which could induce resonant vibration in the bellows or cause erosion of the convolutions resulting in premature failure.
- ♦ The system design pressure and test pressure shall be specified realistically without adding arbitrary safety factors. Excess bellows material thickness required for unrealistic pressures will often produce an adverse effect on the bellows fatigue life or increase the number of convolutions required which may reduce the stability of the bellows. In the case of high temperature applications, it may not be possible to test the expansion joint to 1.5 times the equivalent cold pressure rating of the system. This results from the various materials employed in the construction of the expansion joint, temperature gradient utilized in the design, pressure stability criteria, anchor strength, etc. The manufacturer must be consulted.

- ◆ The maximum, minimum and installation temperatures shall be accurately stated. Where the ambient temperature can vary significantly during pipeline construction, pre-positioning of the expansion joint at installation may be required.
- ◆ The manufacturer shall be advised if the expansion joint will be insulated. Insulation details shall be furnished to the manufacturer in order to properly design the component parts.
- ◆ The movements which are to be absorbed by the expansion joint shall include not only piping elongation or contraction, but also movement of attached vessels, anchors, etc. and the possibility of misalignment during installation. Unless included in the design requirements, misalignment of the expansion joint must be avoided. Where movements are cyclic, the number of cycles expected shall be specified. Similar to pressure, the movements specified must be realistic. An excessive safety factor can often result in an expansion joint which is unnecessarily flexible; thus its stability under pressure is unnecessarily reduced.
- If the flowing medium can pack or solidify, provisions shall then be made to prevent the entrapment or solidification of the material in the convolutions which could result in damage to the expansion joint or pipeline.
- ◆ Internal sleeves are usually installed in the direction of flow. If stagnant flow medium trapped behind the sleeve is undesirable, drain holes in sleeve, purge connections, or packing shall be specified. Where backflow will be encountered, an extraheavy sleeve shall be specified to prevent buckling of sleeve and possible damage to the bellows.

◆ The predicted amplitude and frequency of external mechanical vibrations to be imposed on the bellows, such as those caused by reciprocating or pulsating machinery, shall be specified. A resonant condition in the bellows will result in a grossly reduced fatigue life and must be avoided. The expansion joint designer will attempt to provide a non-resonating design; however, the ability to always assure non-resonance is impossible. Therefore, field modifications to the expansion joint or other system components may be necessary.

The piping system drawings shall specify the location of all anchors, guides, supports and fixed points. Both the anchors and guides must be suitable for the highest pressures to be applied to the system. IN MOST CASES THE TEST PRESSURE WILL BE SIGNIFICANTLY HIGHER THAN THE SYSTEM OPERATING PRESSURE.

The system designer shall specify those special features which best accomplish personnel protection in his particular system. Piping systems containing high pressure and/or hazardous materials which are located in close proximity to personnel shall be provided with additional safety features which will protect such personnel in the event of a failure in the system. Expansion joints can be furnished with special features including, but not limited to, the following:

- ◆ Extra-heavy covers which could serve to impede the effect of a jet flow produced by a failure; however, such covers will not prevent the escaping medium from expanding and filling the surroundings in which it is located.
- Limit rods designed for dynamic loading can be employed to restrain the longitudinal pressure

- thrust in the event of an anchor failure. Such rods would normally remain completely passive until the anchor restraint is removed.
- ♦ A two-ply or two concentric bellows design may be employed with each ply or bellows designed to contain the full line pressure. The annular space between the plies or concentric bellows can be monitored continuously for leakage by means of suitable instrumentation. A change in pressure in the annulus could be used to detect bellows leakage.

The system designer shall provide for the accessibility of components (anchors, expansion joints, guides, etc.) in the piping system for periodic inspection after initial start up.

EXPANSION JOINT DESIGN

The expansion joint design shall conform to the requirements of the EJMA Standards, the ANSI Piping Codes and the ASME Boiler and Pressure Vessel Codes as applicable. The design of structural attachments shall be in accordance with accepted methods, based on elastic theory.

EXPANSION JOINT MANUFACTURING OUALITY

The expansion joint manufacturer shall be required to furnish, on request, a copy of their Quality Assurance Manual.

QUALITY STATEMENT

U.S. Bellows, Inc. is committed to continuous improvement of our products and services. We will work to understand and meet requirements of our external and internal customers. Viewing ourselves as part of a team which includes our customers and our suppliers, we will understand our role in meeting the teams goals. We will plan and execute our work to meet our customers' specifications. Working together we will strive to..."DO IT RIGHT THE FIRST TIME".

INSTALLATION

The necessary steps for installing all expansion joints shall be pre-planned. The installers shall be made aware of these steps as well as the installation instructions furnished by the manufacturer. The most critical phases of the expansion joint installation are as follows.

- Care shall be exercised to prevent any damage to the thin bellows section, such as dents, scores, arc strikes and weld spatter.
- ♦ No movement of the expansion joint (compression, extension, offset, rotation and especially torsion) due to piping misalignment, for example, shall be imposed which has not been anticipated and designed into the movement capability of the expansion joint. If such movements are imposed, they can result in system malfunction, damage to the bellows or other components in the system. Specifically, cycle life can be substantially reduced, forces imposed on adjacent equipment may exceed their design limits, internal sleeve clearances may be adversely affected, and the pressure capacity and stability of the bellows may be reduced.
- Any field pre-positioning shall be performed in accordance with specific instructions which include both the direction and magnitude of the movement.
- Anchors, guides and pipe supports shall
 be installed in strict accordance with the
 piping system drawings. Any field variances
 from planned installation may affect proper
 functioning of the expansion joint and must be
 brought to the attention of a competent design

authority for resolution.

- The expansion joint, if provided with internal sleeves, shall be installed with the proper orientation with respect to flow direction.
- After the anchors or other fixed points are in place and the piping is properly supported and guided, the expansion joint shipping devices should normally be removed in order to allow the expansion joint to compensate for changes in ambient temperature during the remainder of the construction phase.

POST INSTALLATION INSPECTION PRIOR TO SYSTEM PRESSURE TEST

A careful inspection of the entire piping system shall be made with particular emphasis on the following:

- Are the anchors, guides and supports installed in accordance with the system drawings?
- Is the proper expansion joint in the proper location?
- Are the expansion joint flow direction and positioning correct?
- Have all the expansion joint shipping devices been removed?
- Are all guides, pipe supports and the expansion joints free to permit pipe movement?
- ◆ If the system has been designed for a gas, and is to be tested with water, have provisions been made for proper support of the additional dead weight load on the piping and expansion joint? Some water may remain in the bellows convolutions after the test. If this is detrimental to the bellows or system operation, means shall be provided to remove such water.
- Has any expansion joint been damaged during handling and installation?

- Is any expansion joint misaligned? This can be determined by measuring the expansion joints' overall length, inspection of the convolution geometry, and checking clearances at critical points on the expansion joint and at other points in the system.
- Are the bellows and other movable portions of the expansion joint free of foreign material?

INSPECTION DURING AND IMMEDIATELY AFTER SYSTEM PRESSURE TESTS

WARNING: EXTREME CARE MUST BE EXERCISED WHILE INSPECTING ANY PRESSURIZED SYSTEM OR COMPONENT.

A visual inspection of the system shall include checking for the following:

- ♦ Evidence of leakage or loss of pressure.
- Distortion or yielding of anchors, expansion joint hardware, the bellows and other piping components.
- Any unanticipated movement of the piping due to pressure.
- ♦ Evidence of instability (squirm) in the bellows.
- The guides, expansion joints and other moveable parts of the system shall be inspected for evidence of binding.
- Any evidence of abnormality or damage shall be reviewed and evaluated by competent design authority.

PERIODIC INSERVICE INSPECTION

WARNING: EXTREME CARE MUST BE EXERCISED WHILE INSPECTING ANY PRESSURIZED SYSTEM OR COMPONENT.

Immediately after placing the system in operation, a visual inspection shall be conducted to insure that the thermal expansion is being

absorbed by the expansion joints in the manner for which they were designed. The bellows shall be inspected for evidence of unanticipated vibration.

A program of periodic inspection shall be planned by the system designer and conducted throughout the operating life of the system. The frequency of these inspections will be determined by the service and environmental conditions involved. These inspections should include the items noted previously as well as an examination for signs of external corrosion, loosening of threaded fasteners and deterioration of anchors, guides and other hardware. IT MUST BE UNDERSTOOD THAT THIS INSPECTION PROGRAM, WITHOUT ANY OTHER BACKUP INFORMATION, CANNOT GIVE EVIDENCE OF DAMAGE DUE TO FATIGUE, STRESS CORROSION OR GENERAL INTERNAL CORROSION. THESE CAN BE THE CAUSE OF SUDDEN FAILURES AND GENERALLY OCCUR WITHOUT ANY VISIBLE OR AUDIBLE WARNING. Where the critical nature of the system warrants, it may be necessary to devise means for minimizing the probability of this type failure, including periodic preventative replacement of critical system components.

Where any inspection reveals evidence of malfunction, damage or deterioration, this shall be reviewed by a competent design authority for resolution.

SYSTEM OPERATION

A record shall be maintained of any changes in system operating conditions (i.e. pressure, temperature, thermal cycling, water treatment) and piping modifications. Any such change shall be reviewed by a competent design authority to determine its effect on the performance of the anchor, guides and expansion joints.

TYPICAL CAUSES OF EXPANSION JOINT FAILURE

Bellows expansion joints which have been properly designed and manufactured for specified piping system conditions have given many years of satisfactory service. Failures, of course, have occurred which are of concern both to users and to reputable expansion joint manufacturers. Failures can occur for many reasons, but experience has shown that certain causes of failure fall into fairly distinct categories. The following list, which shows some typical causes but is by no means all-inclusive, is presented with the intent that, as knowledge of the causes of failure becomes more widespread, action can be taken to prevent or minimize these occurrences.

- Shipping and handling damage. Examples: Denting or gouging of bellows from being struck by hard objects (tools, chain falls, forklifts, adjacent structures, etc.); improper stacking for shipping or storage; insufficient protection from weather or other adverse environmental conditions.
- Improper installation and insufficient protection during and after installation.
 - Examples: Joints with internal liners installed in the reverse direction with respect to flow; installing an expansion joint in a location other than as prescribed by the installation drawings; premature removal of shipping devices; springing of bellows to make up for piping misalignment; insufficient protection from mechanical damage due to work in the surrounding area; insufficient protection of bellows during nearby welding operations and failure to remove shipping devices before placing system in operation.

- Improper anchoring, guiding and supporting of the system.
- ♦ Anchor failure in service.
- ♦ Bellows corrosion, both internal and external.
- System over-pressure (in-service or hydrostatic test).
- Bellows vibration (mechanical or flow induced resulting in high cycle fatigue).
- Excessive bellows deflection (axial, lateral, angular deflections greater than design values).
- ♦ Torsion.
- ♦ Bellows erosion.
- Packing of particulate matter in the bellows convolutions which inhibits proper movement of the bellows.

Refurbished Single 4" Diameter Expansion Joint in One Day

Replacement Metallic Expansion Joint Fabricated and Installed Within Two Days

View online catalog section for expansion joint failures: www.usbellows.com/failures

PIPE GUIDE SPACING TABLE

Pipe guides are necessary to assure that the thermal expansion of the pipeline is properly directed into the expansion joint and to prevent buckling of the line. Additional guides located adjacent to the expansion joint are necessary because of the inherent flexibility of the bellows and the compressive loading on the pipe caused by the pressure thrust of the expansion joint. The first guide must be located within a distance of four pipe diameters from the expansion joint and the second guide within fourteen pipe diameters of the first guide. Additional guides should be located in accordance with the Pipe Guide Spacing Chart shown below for standard weight carbon steel pipe or calculated from the following formula:

L=0.131
$$\left[\frac{\text{El}}{\text{pa}\pm\Delta R_A} \right]^{1/2}$$

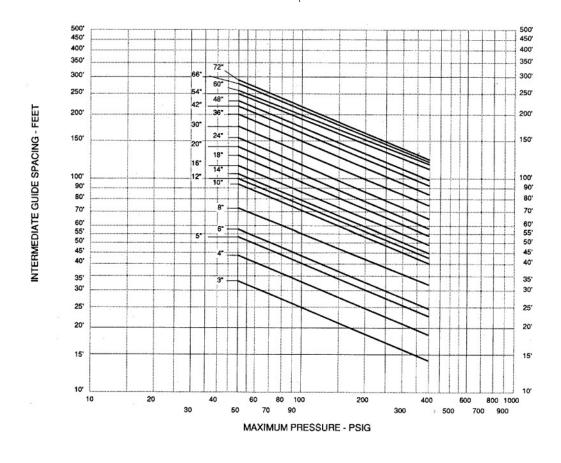
Where:

L = maximum intermediate guide space, (feet)

E = modulus of elasticity of pipe material, (psi)

I = moment of inertia of pipe, (in⁴)

P = design pressure, (psig)


a = bellows effective area, (in²)

 $R_A = bellows spring rate, (lb/in)$

 Δ = axial stroke of bellows, (in)

Note: When a bellows is compressed in operation,

use (+) $|\Delta R_{A}|$; when extended, use (-) $|\Delta R_{A}|$.

ROUND EXPANSION JOINT DATA SHEET Use our online quote form: www.usbellows.com/quote Date: Customer: Page Project: Prepared By: Applicable Codes and Standards: B31.1, B31.3, Sect 8 Div 1 Item or Tag Number: Quantity: Size: Orientation: Style or Type (single, universal, hinged, gimbal, etc.): END Thickness/Flange Rating CONNECTIONS Material Design Pressure Operating (PSI/INCHES WATER) Design **T**EMPERATURE Operating Installation Media Flow Velocity MEDIA Flow Direction **Axial Extension Axial Compression** Lateral INSTALLATION Angular Number of Cycles **Axial Extension Axial Compression** MOVEMENTS AND Design Lateral CYCLE LIFE Angular Number of Cycles **Axial Extension Axial Compression** Lateral **OPERATING** Angular Number of Cycles Bellows MATERIALS Liner Cover Overall Length Maximum O.D. **DIMENSIONS** Minimum I.D. Maximum Axial Spring Rate SPRING RATES Maximum Lateral Spring Rate Maximum Angular Spring Rate Bellows Long Seam Weld Bellows Attachment Weld QUALITY ASSURANCE Piping U-2 Forms

SAMPLE EXPANSION JOINT SPECIFICATION

1.0 General

This specification along with the purchase order, expansion joint data sheet, and drawings delineate the requirements for the design, fabrication, and testing of the expansion joint.

2.0 Design

- 2.1 The bellows shall be designed in accordance with the design equations for unreinforced and reinforced bellows as specified in *Section C of The Standards of the Expansion Joint Manufacturers*, *Fifth Edition*, 1980 including all current addenda.
- 2.2 If reinforcement of the bellows is necessary for pressure, the reinforcing rings shall be formed integrally with the bellows. No bolted-on control devices such as equalizing rings shall be used.
- 2.3 Expansion joints weighing more than 500 pounds shall be provided with lifting lugs.

3.0 Materials

3.1 Expansion joint materials shall be as specified on the expansion joint data sheet. Material certifications shall be available for inspection.

4.0 Fabrication

- 4.1 Bellows shall be formed from seamless or longitudinally butt welded cylinders. If welded, the butt weld must be planished to within 10% of the original sheet thickness.
- 4.2 Bellows convolutions shall be "U" shaped and formed with an even pitch and height. Circumferential welds joining one convolution to another aren't permitted.
- 4.3 Bellows shall be provided in the as formed unannealed condition.

- 4.4 End connections are to match the adjacent piping as specified on the data sheet.
- 4.5 All welding shall be in accordance with ASME Section IX or AWS DI.I.

5.0 Quality Assurance

- 5.1 The expansion joint manufacturer must maintain a quality assurance system. A copy of the Quality Assurance Manual must be made available upon request.
- 5.2 All of the non-destructive examination requirements are specified on the expansion joint data sheet. The manufacturer must have written procedures for each type of non-destructive examination specified.

6.0 Additional Requirements

- 6.1 Each expansion joint shall be provided with a stainless steel nameplate indicating the date of manufacture, design rating of the expansion joint and any other information required by the purchase order.
- 6.2 When the expansion joint is supplied with an internal sleeve, the flow direction must be indicated and be plainly visible on the outside of the joint.
- 6.3 All surfaces of the expansion joint shall be thoroughly cleaned of dirt, grease, oil and all foreign matter.
- 6.4 Shipping bars shall be installed on the expansion joint to maintain the proper shipping length. Shipping bars are to be painted yellow.
- 6.5 Each expansion joint shall be tagged with recommended installation instructions.

EXPANSION JOINT INSTALLATION INSTRUCTIONS

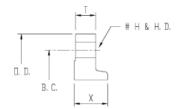
- Inspect for damage during shipment. Check for dents, broken hardware, damage to crate, etc.
- Store in a clean dry area where the expansion joint will not be exposed to heavy traffic or damaging environment.
- ♦ Use only designated lifting lugs.
- Do not use chains or any lifting device directly on the bellows or protective cover.
- ◆ Remove any foreign material that may have become lodged between the convolutions.
- Make the piping system fit the expansion joint. Do not remove shipping bars nor stretch, compress, or offset the joint to fit the piping
- Install expansion joint with flow arrow pointing in the direction of flow.
- Do not force-rotate (torque) one end of the expansion joint for the alignment of flange bolt holes. It is desirable to leave one of the connecting flanges loose for bolt hole alignment.
- Do not use graphite impregnated gaskets in contact with stainless steel facings or sleeves.
- Prior to welding, cover the bellows element with a fire retardant non-asbestos blanket.
- Remove all shipping devices only after the installation is complete and prior to any pressure test of the system. Only chloride free water should be used for hydrostatic test.
- ♦ Do not use cleaning agents that contain chlorides.
- ♦ Do not use steel wool or wire brushes on the bellows element.

FAILURE TO FOLLOW THESE INSTRUCTIONS MAY VOID OUR WARRANTY. IF ADDITIONAL INFORMATION IS REQUIRED, PLEASE CALL (713) 731-0030 AND ASK FOR HELP.

63" In-Line Pressure Balanced Expansion Joint with Refractory Lining

Metallic Expansion Joint with Refractory Lining

In-Line Pressure Balanced Expansion Joint with Refractory Lining



CATALOG FLANGE DATA

The summary of flange data listed below is offered as a guide to assist designers in selecting the most economical flanges for their piping system. When selecting a bellows from the catalog data pages that will have flanged connections, it is important that the system designer confirm that the flanges they have selected have an adequate pressure rating for the given temperature. There may be instances where the bellows has a higher pressure rating than the flange does at the design temperature.

The service temperature ratings shown below have been taken from *Taylor Forge Catalog #571*. Where elevated temperature data was not available, the service pressure ratings were obtained by down rating the ambient pressure rating in accordance with ASME Code strength versus temperature correction factors.

FLANGE	Nominal Diameter	Service Pressure Rating (PSIG) At Temperature (Deg F)						
		20-100	200	300	400	500	600	650
Class 125LW FFSO AWWA C207-54T Class D*	14" to 96"	150	131	115	99	83	67	59
150# RFSO ANSI B16.5	3" to 24"	275	240	210	180	150	130	120
300# RFSO ANSI B16.5	3" to 24"	720	700	680	665	625	555	515

*Class 125 LW flanges do not include a raised face.

NOM	M CLASS 125 LW							NOM CLASS 150 ANSI B16.6							
DIA	OD	Х	Т	ВС	#H	HD	WT (LB)	DIA	OD	Х	Т	ВС	#H	HD	WT (LB)
14	21	1-1/4	3/4	18-3/4	12	1-1/8	44	3	7-1/2	1-3/16	15/16	6	4	3/4	8
16	23-1/2	1-1/4	3/4	21-1/4	16	1-1/8	58	3-1/2	8-1/2	1-1/4	15/16	7	8	3/4	11
18	25	1-1/4	3/4	22-3/4	16	1-1/4	59	4	9	1-5/16	15/16	7-1/2	8	3/4	13
20	27-1/2	1-1/4	3/4	25	20	1-1/4	69	5	10	1-7/16	15/16	8-1/2	8	7/8	15
22	29-1/2	1-3/4	1	27-1/4	20	1-3/8	76	6	11	1-9/16	1	9-1/2	8	7/8	19
24	32	1-3/4	1	29-1/2	20	1-3/8	115	8	13-1/2	1-3/4	1-1/8	11-3/4	8	7/8	30
26	34-1/4	1-3/4	1	31-3/4	24	1-3/8	125	10	16	1-15/16	1-3/16	14-1/4	12	1	43
28	36-1/2	1-3/4	1	34	28	1-3/8	140	12	19	2-3/16	1-1/4	17	12	1	64
30	38-3/4	1-3/4	1	36	28	1-3/8	150	14	21	2-1/4	1-3/8	18-3/4	12	1-1/8	90
32	41-3/4	1-3/4	1-1/8	38-1/2	28	1-5/8	205	16	23-1/2	2-1/2	1-7/16	21-1/4	16	1-1/8	98
34	43-3/4	1-3/4	1-1/8	40-1/2	32	1-5/8	215	18	25	2-11/16	1-9/16	22-3/4	16	1-1/4	130
36	46	1-3/4	1-1/8	42-3/4	32	1-5/8	235	20	27-1/2	2-7/8	1-11/16	25	20	1-1/4	165
38	48-3/4	1-3/4	1-1/8	45-1/4	32	1-5/8	265	22	29-1/2	3-1/8	1-13/16	27-1/4	20	1-3/8	185
40	50-3/4	1-3/4	1-1/8	47-1/4	36	1-5/8	280	24	32	3-1/4	1-7/8	29-1/2	20	1-3/8	220
42	53	1-3/4	1-1/4	49-1/2	36	1-5/8	330								i I
44	55-1/4	2-1/4	1-1/4	51-3/4	40	1-5/8	350			30	0 LB ANS	SI B16.5			
46	57-1/4	2-1/4	1-1/4	53-3/4	40	1-5/8	365	3	8-1/4	1-11/16	1-1/8	6-5/8	8	7/8	13
48	59-1/2	2-1/2	1-3/8	56	44	1-5/8	425	3-1/2	9	1-3/4	1-3/16	7-1/4	8	7/8	17
50	61-3/4	2-1/2	1-3/8	58-1/4	44	1-7/8	450	4	10	1-7/8	1-1/4	7-7/8	8	7/8	22
52	64	2-1/2	1-3/8	60-1/2	44	1-7/8	475	5	11	2	1-3/8	9-1/4	8	7/8	28
54	66-1/4	2-1/2	1-3/8	62-3/4	44	1-7/8	500	6	12-1/2	2-1/16	1-7/16	10-5/8	12	7/8	39
60	73	2-3/4	1-1/2	69-1/4	52	1-7/8	640	8	15	2-7/16	1-5/8	13	12	1	58
66	80	2-3/4	1-1/2	76	52	1-7/8	750	10	17-1/2	2-5/8	1-7/8	15-1/4	16	1-1/8	81
72	86-1/2	2-3/4	1-1/2	82-1/2	60	1-7/8	850	12	20-1/2	2-7/8	2	17-3/4	16	1-1/4	115
84	99-3/4	3	1-3/4	95-1/2	64	2-1/8	1000	14	23	3	2-1/8	20-1/4	20	1-1/4	165
96	113-1/4	3-1/4	2	108-1/2	68	2-3/8	1650	16	25-1/2	3-1/4	2-1/4	22-1/2	20	1-3/8	190
								18	28	3-1/2	2-3/8	24-3/4	24	1-3/8	250
								20	30-1/2	3-3/4	2-1/2	27	24	1-3/8	315
								22	33	4	2-5/8	29-1/4	24	1-5/8	370
								24	36	4-3/16	2-3/4	32	24	1-5/8	475

ANGLE FLANGES 5 PSIG Maximum Pressure

Low cost flanges for low pressure applications. Materials: Carbon steel (other materials available upon request).

Note: To prevent field misalignment, we recommend purchasing companion angle flanges when the expansion joint is ordered with angle flanges (AF).

NOMINAL	ACTUAL	ANGLE	ANGLE	ANGLE	APPROXIMATE	DRILL	ING INFORMAT	ON
DIAMETER	INSIDE DIAMETER	THICKNESS	HEIGHT	WIDTH	WEIGHT	BOLT CIRCLE	BOLT HOLE	NUMBER
	"I.D" "T" "H" "W" ((LB)	DIAMETER	DIAMETER	OF HOLES		
14"	14-1/4"	3/16"	1-1/2"	1-1/2"	8	15-13/16"	7/16"	12
16"	16-1/4"	3/16"	1-3/4"	1-3/4"	10	18-1/8"	7/16"	16
18"	18-1/4"	3/16"	1-3/4"	1-3/4"	11	20-1/8"	7/16"	16
20"	20-1/4"	3/16"	1-3/4"	1-3/4"	12	22-1/8"	7/16"	20
22"	22-1/4"	3/16"	1-3/4"	1-3/4"	14	24-1/8"	7/16"	20
24"	24-1/4"	3/16"	1-3/4"	1-3/4"	15	26-1/8"	7/16"	20
26"	26-1/4"	3/16"	2"	2"	18	28-1/2"	9/16"	24
28"	28-1/4"	3/16"	2"	2"	20	30-1/2"	9/16"	24
30"	30-1/4"	3/16"	2"	2"	21	32-1/2"	9/16"	28
32"	32-1/4"	3/16"	2"	2"	22	34-1/2"	9/16"	28
34"	34-1/4"	3/16"	2"	2"	23	36-1/2"	9/16"	32
36"	36-1/4"	3/16"	2"	2"	25	38-1/2"	9/16"	32
38"	38-1/4"	3/16"	2"	2"	26	40-1/2"	9/16"	32
40"	40-1/4"	3/16"	2"	2"	27	42-1/2"	9/16"	36
42"	42-1/4"	3/16"	2"	2"	29	44-1/2"	9/16"	36
44"	44-1/4"	3/16"	2"	2"	30	46-1/2"	9/16"	40
46"	46-1/4"	3/16"	2"	2"	31	48-1/2"	9/16"	40
48"	48-1/4"	3/16"	2"	2"	32	50-1/2"	9/16"	40

PART	Size	Pressure	LENGTH	END CONNECTIONS	Түре	Accessories	Material
Number							
	72	E	12 1/2	A F A F	c		221
Example	/2	3	13-1/2	AF AF	3	L	321

BELLOWS MATERIAL

Bellows can be formed from most ductile materials that can be welded by the automatic T.I.G. welding process and result in a homogenous weld structure.

It is imperative that companies specifying and purchasing bellows give thorough consideration to the selection of the bellows material. Due to the fact that a given media will vary from system to system, and that most media specifications cannot accurately reflect what actually will occur during system operation, it is not appropriate for U.S. Bellows to make specific recommendations regarding bellows material.

If any doubt exists concerning proper material selection for the bellows, we recommend that a metallurgist with the appropriate basic material supplier be consulted.

CATALOG BELLOWS MATERIALS

Material Type	ASTM* Material Specification
304 S/S	A-240
304L S/S**	A-240
316 S/S	A-240
316 L S/S	A-240
321 S/S	A-240
Monel® 400**	B-127
Inconel® 600	B-168
Inconel® 625	B-443
Incoloy® 800/800H**	B-409
Incoloy® 825**	B-424
Hastelloy® C-276**	B-575

^{**} ASME "SA" or "SB" materials are inventoried in limited gauges.

All bellows material purchased by U.S. Bellows is in "mill annealed" condition, in accordance with "A" or "B" specifications ("SA" or "SB" for ASME Code requirements). Any other heat treating operations before or after welding, and before or after forming the bellows convolutions will not be performed unless specified by the purchaser. It should be noted that heat treating the bellows after forming the bellows convolutions alters the bellows capabilities and performance characteristics, namely pressure capacity, spring rate, and cycle life. We will cooperate with our customers that specify post-form heat treatment of the bellows to determine the effects that the heat treatment will have on published bellows performance data.

COMMON BELLOWS MATERIAL FAILURES

Failure Mode	Typical Source
Stress Corrosion*	Chlorides (austenitic stainless steels) Caustics, high temperature sulfurous gas (nickel alloys)
Fatigue	Vibration
Carbide precipitation	Unstabilized materials at high temperatures
Squirm & Rupture	Over pressurization

^{*} It is important to note that nickel alloys are typically specified per steam service to avoid chloride-induced stress corrosion. The steam must also be checked to avoid nickel alloy failures in steam lines which contain caustics.

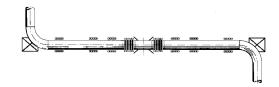
View online catalog section for bellows materials: www.usbellows.com/bellows

APPLICATIONS AND PIPING ARRANGEMENTS

APPLICATIONS OF EXPANSION JOINTS IN TYPICAL PIPING SYSTEMS

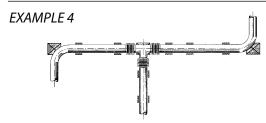
This section presents typical piping systems in which various movement and force limitation conditions are shown with suggested expansion joint solutions. In these examples, the various types of expansion joints are shown so that their operation and characteristics can be more clearly understood and demonstrated. Hopefully the piping designer will see in these examples enough similarity to his piping problem that the easiest and most economic solution would present itself quickly.

Axial Movements Only

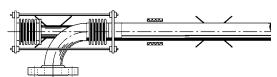

Phone: 713-731-0030

In this first example, a long straight pipe, anchored at each end, must expand thermally. A single type expansion joint is used with intermediate pipe guides. Good practice dictates that the expansion joint be located as close as possible to one of the anchors, in this case adjacent to the elbow. The first guide should be located as close as possible to the expansion joint, so that the deflection is limited to the expected axial direction. The second guide is located relatively close to the first to prevent any bowing of the pipe, and again to ensure that the end of the pipe at the expansion joint attachment moves in only the expected axial direction. The spacing of the remaining guides should follow the recommendations of the EJMA standards, which are contained in this design manual.

EXAMPLE 2


If the straight run of pipe is very long, good practice dictates that the expanding pipe be divided into smaller segments with intermediate anchors. In this way, the pipe's movement and direction of movement is more safely controlled. An expansion joint is placed between each set of anchors, to absorb the thermal growth of that section of pipe. The above diagram shows this arrangement and the recommended guiding, which is consistent with the discussion in Example 1.

EXAMPLE 3


In this example, the same line contains a reducer, and therefore, the pipe run consists of two different diameters. Since the pressure thrust on the main anchors is a function of the pressure times the cross-sectional area of the expansion joints, if only one expansion joint of either pipe size were to be used, a portion of the pressure thrust would exist in the pipe wall as a compression force, tending to buckle or bow the pipe. By locating a main anchor at the reducer, the thermal expansion of each pipe section is confined to that pipe section, and an expansion joint is provided for each section. In this case, the expansion joints are located on either side of the reducer, which satisfies the need to locate them near an anchor. The rules for pipe guiding should be the same as mentioned above.

When another pipe is branching off a long section of straight pipe, the configuration shown above utilizes the Example 2 arrangement for the main pipe section; however, instead of an intermediate anchor, a main anchor should be used at the tee. This main anchor resists the pressure thrust of the branch line. In the direction of the main line the anchor must resist any dynamic pressure thrust imbalance resulting from the changing flow conditions caused by the branch line. Again, all the expansion joints are located near the anchor, and the guiding of all the pipes follows that of Example 1.

EXAMPLE 5

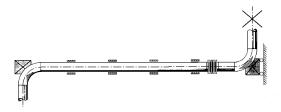
In this example the pipe takes a change in direction with an elbow. The axial thermal expansion of the horizontal pipe is absorbed with a pressure balanced elbow expansion joint, so that a main anchor is not required at the elbow. An intermediate anchor is located at the elbow such that the vertical leg does not need to even resist the spring forces of the expansion joint when it deflects. With pressure balanced expansion joints, the pipe wall is in tension, since the pressure thrust is balanced within the pipe and expansion joint. As a result, the extensive guiding provided for the previous examples can be eliminated. Usually, it is good practice to provide at least one guide near the expansion joint, as shown.

View online catalog section for axial movements: www.usbellows.com/axial

LATERAL, ANGULAR AND COMBINED MOVEMENTS

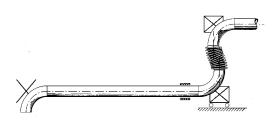
Often the piping arrangement, force limitations, number of operating cycles, and economics, dictate that deflections may not be simple axial motions as described above, but will be lateral, angular or combinations of all three. The following examples show how various piping problems are solved with different types of expansion joints, anchoring and guiding arrangements.

43" Hinged Expansion Joints with 5" Thick Refractory Lining

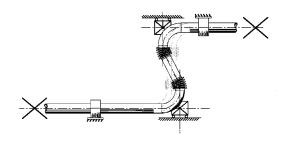


Rectangular Metallic Universal Expansion Joint with Cor-Ten Bellows

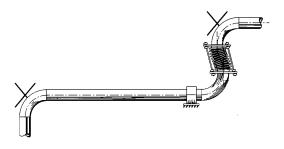
U.S. Bellows, Inc.



EXAMPLE 6

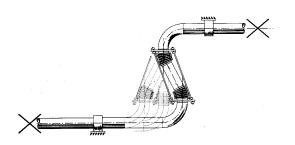

In this example, if the pressure and deflections are low enough, an inexpensive single expansion joint is able to absorb the thermal expansion of both the pipe run in which the expansion joint is located, and the perpendicular pipe. The growth of the perpendicular pipe produces lateral deflection in the expansion joint, while axial deflection absorbs the growth of the horizontal run. This combination of movements is, therefore, handled by a single expansion joint. The pressure thrust cannot be resisted by the expansion joint and a "directional" anchor must be provided at the elbow to permit the elbow to deflect vertically. The pipe guiding required follows that of Example 1.

EXAMPLE 7

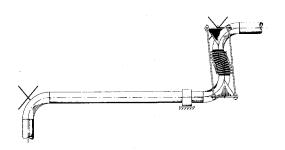

As in Example 6, a single expansion joint absorbs, as lateral deflection, the thermal expansion of the long horizontal pipe run. The benefit of this arrangement is that the anchoring to restrain the

that contains the expansion joint. The long pipe is in tension from its pressure thrust and does not require extensive guiding. A directional anchor is located at the lower elbow, with the freedom to permit the growth of the horizontal pipe. The upper elbow is attached to a main anchor, and is the fixed point from which all the deflections are calculated. At the left elbow, an intermediate anchor is added to fix the end of the portion of pipe from which the expansion joint is accepting movement.

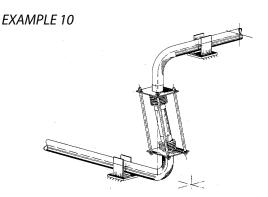
If lateral deflections will be larger than a single expansion joint can accept, a universal type can be used as shown above.


EXAMPLE 8

When anchoring to absorb the pressure thrust shown in the previous example is impractical, or uneconomical, an arrangement using a tied single expansion joint can be used as shown above. The


U.S. Bellows, Inc.

tie rods are tension devices which act the same as the pipe wall in resisting or carrying the pressure thrust. As a result, the length of the expansion joint becomes fixed, and the unit cannot absorb the axial deflection produced by the thermal expansion of the pipe in which it is installed. The expansion joint will absorb, as lateral deflection, the thermal expansion of the long horizontal pipe. Since the short vertical pipe length will change due to the rotation of the tie rods and the thermal expansion of its elbows and hot pipe, the horizontal pipe will bend. Therefore a planar guide is provided as shown. This arrangement will only work if the horizontal pipe can accept the bending. Usually it is practical and economical for small vertical movements and/ or long horizontal pipe runs.

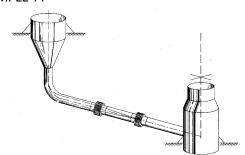

As in Example 7, if large lateral deflections must be absorbed, tied universal expansion joints should be provided as shown above.

EXAMPLE 9

This arrangement is similar to Example 8, except that the need for the long horizontal pipe to accept bending is reduced or eliminated, by the attachment of the tie rods from elbow to elbow. Thus, the length of the vertical pipe between the elbows, including the expansion joint, is fixed.

All the thermal expansion of the vertical leg is absorbed by the bellows within the tie rods. Some bending of the long pipe will occur due to the rotation of the tie rods during the lateral deflection. However, since the rods now cover a longer distance, the angle they must rotate for a given lateral deflection is considerably reduced.

The previous examples dealt with all the piping and deflections in a single plane. Often, however, pipe runs change planes as well as direction, and the resulting thermal expansion can appear to be complicated. In this example, a tied universal expansion joint is shown accepting the thermal


60" Diameter Pressure Balanced Expansion Joint with Turning Vanes

growth of two horizontal pipes in two different planes. The example is almost identical to Example 8, except that the lateral deflections must be analyzed as vectors. The real deflection of the expansion joint is a single resultant lateral deflection in a single resultant plane. The axial thermal expansion of the pipe length that includes the expansion joint is absorbed within the expansion joint and by bending the pipes just as in Example 8.

The expansion joint can also have the tie rods attached to the elbows, as in Example 9, and achieve the same benefits, but the deflections must still be determined as vectors, as above.

EXAMPLE 11

In this example two vessels are connected by a straight inclined or horizontal pipe. As shown, each vessel is assumed to be an anchor, wherein the vessel supports must be capable of accepting the pressure thrust developed in the pipe, in the direction of the axis of the pipe. The purpose of the expansion joint is to accept the thermal expansion of the distance between the centerlines of the vessels. Even though the pipe is attached to the right vessel at its wall, the growth of the diameter of the vessel itself adds to the connecting pipe growth. The growth from anchor point to anchor point must be used for the thermal expansion calculation.

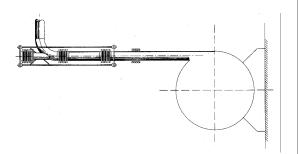
Here we have used an untied universal expansion joint, since the growth of the pipe is accepted as axial compression by the bellows. When

the pipe is inclined, or the elevation of the anchor of each vessel is different, the vertical thermal expansion creates a lateral deflection vector, which is easily accepted by the universal type of expansion joint.

In this application, because the pipe and expansion joint are horizontal, or inclined, the weight of pipe spool between the bellows must be considered in the final design. Tie rods which do not restrain the thrust or control rods, can be added to suspend the center spool. Similarly, slotted hinges can be added over each bellows. Another mechanism for the same purpose is a pantographic linkage.

The advantage of the pantograph is that it automatically distributes the axial deflection equally between the two bellows without the addition of other devices.

View online catalog section for lateral, angular and combined movements: www.usbellows.com/lateral

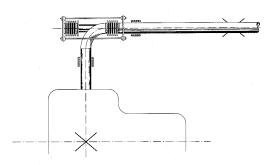

PRESSURE BALANCING EXAMPLES

The pressure thrust produced by low pressures can be tremendous in large diameter systems, just as it can be at normal pressure ratings in small pipes. To avoid expensive anchors, to keep long pipe runs in tension, to prevent buckling, or reduce reaction forces on equipment, the pressure in the pipe can be used to generate balancing forces within the expansion joint. These combinations of bellows and thrust restraining structural components can accept almost any combination of movements, as shown in the following examples.

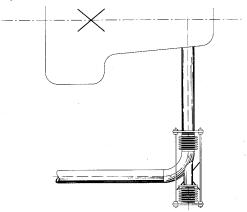
View online catalog section for pressure balancing movements: www.usbellows.com/pressure-balancing

U.S. Bellows, Inc.

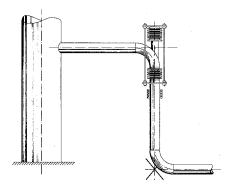
EXAMPLE 12



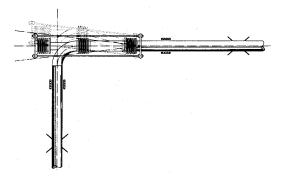
The pressure balanced elbow is ideal for absorbing the thermal expansion of equipment, such as turbines, pumps and compressors, which rely upon low reaction forces on their inlet and exhaust flanges. In this example, only an intermediate anchor is provided at the elbow, to isolate the equipment from any forces produced in the remaining piping. The pressure thrust force produces tension on the equipment flange, but the only forces produced by the deflection, are the spring resistance of the bellows within the expansion joint. The spring rate of these units is the sum of the spring rates of the bellows on each side of the elbow, and care must be taken to provide a unit which produces spring forces low enough to satisfy the equipment maximums as stated by the equipment manufacturer. Bellows may also be cold sprung to reduce these forces even lower.


36" Pressure Balanced Expansion Joint

EXAMPLE 13

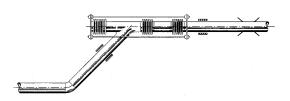

In this example, which may be typical for a turbine exhaust application, the force on the machine's flange is the spring reaction of the bellows in lateral deflection, as described in Example 12. Again, the flange is also subjected to an axial force equal to the pressure thrust, as if it were capped, but the turbine's mounts are not. The pipe guide between the expansion joint and the equipment flange absorbs the forces produced by the thermal expansion of the pipe, along its axis.

When the expansion joint must be located adjacent to the equipment flange, the elbow of the expansion joint can be used as an intermediate anchor point as shown below.


Now, all radial growth of the machine is absorbed by the expansion joint as axial deflection. Axial machine growth creates lateral deflection.

EXAMPLE 14

The vertical growth of a tank or vessel is handled easily as shown. The advantage of pressure balancing is that the vessel is not subjected to an unbalanced side load from the pressure thrust at the nozzle. Radial growth of the vessel is accepted by the expansion joint as lateral deflection. With an intermediate anchor at the pipe elbow near the ground to isolate downstream pipe movement from the vessel, a guide is added near the expansion joint to eliminate or limit pipe bending.

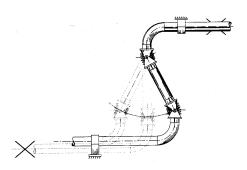

EXAMPLE 15

In the previous examples, a single bellows was shown as the primary, or working bellows. When lateral movements are large, or lateral spring forces must be minimized, the primary bellows is a universal type as shown above.

Phone: 713-731-0030

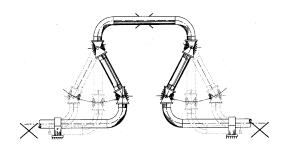
EXAMPLE 16

Most often the elbows in pressure balanced expansion joints are 90 degrees. They can be provided with any degree angle elbow and they will function the same way as is shown with the 45 degree pressure balanced elbow above.

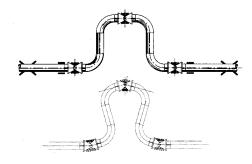

EXAMPLES USING HINGED OR GIMBAL EXPANSION JOINTS

When thermal expansion or other movements want to bend a pipe, in order to lower stresses, a controlled bending point can be added with a hinge or gimbal expansion joint. The hinged unit will limit bending to only one plane, and the gimbal will permit bending in all planes. The piping is always in tension because the pressure thrust is contained within the system, and main pressure thrust anchors are not required. Generally, only guides and intermediate anchors are needed, as shown in the examples. The full weight of the pipe between these expansion joints can be carried by them. With proper hinge and gimbal structure, the weight of additional pipes can also be supported as well as wind loading.

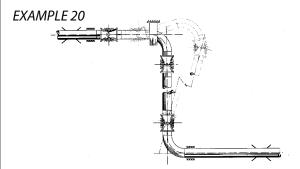
View online catalog section for hinged and gimbal expansion joint movements: www.usbellows.com/hinged-and-gimbal-movements


U.S. Bellows, Inc.

EXAMPLE 17


Two hinged expansion joints in a straight pipe run will permit lateral deflection of the pipe, just as a universal expansion joint will. However, the axial thermal growth will not be absorbed within the expansion joints. This example uses a flexible straight pipe section between two elbows to accept the large thermal expansion of long pipe runs on either side. Planar guides, or guides which permit movement in a plane perpendicular to the pipe as well as axially, should be added because some pipe bending may occur.

EXAMPLE 18

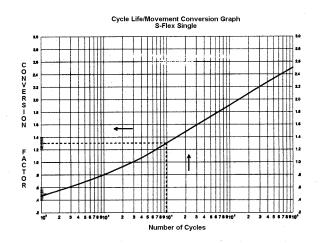


In this example a highly flexible pipe loop is created with a double set of the arrangement shown in Example 17. The top of the loop is anchored with an intermediate anchor, and each side operates independently of the other.

EXAMPLE 19

A highly efficient replacement for a rigid pipe loop is depicted here with three hinged expansion joints. Using four 90 degree elbows, this "loop" has only two "legs" with short pipe lengths. These features develop much lower flow losses than a common pipe loop for the same axial travel. Pipe guides should be used near the outer expansion joints. Only intermediate anchors are needed.

The three pin arch system shown in this example accepts deflections in all directions and operates in the same manner as the loop shown in Example 19. Because the movement of each bellows is highly controlled, and limited to bending only, it is one of the most reliable arrangements for large pipe and vessel deflections. When hinged expansion joints are used, the movements are confined to a single plane. When at least two gimbal joints are used, the movements accepted can be in all directions and in any plane.


SINGLE EXPANSION JOINTS CYCLE LIFE AND RATED MOVEMENT

Single Expansion Joints

U.S. Bellows' single expansion joints are designed for 3000 cycles for any one tabulated movement shown. Cycle life may be increased, or movement may be increased (decreasing the cycle life) by utilizing the graph located on this page. The graph may also be used for superimposing more than one movement condition on the bellows at one time. It is important to remember that the movements shown in the bellows data pages do not allow for any installation misalignment. A proper specification for a bellows expansion joint should reflect what the actual system movements will be. To insure the highest quality bellows for the least cost, all movement conditions must be taken into account. Refer to the HOW TO ORDER section on page 43 for an example of the proper analysis and selection of a single expansion joint.

Examples of movement conditions that typically occur in a piping system are:

- Installation: Allow one cycle installation misalignment.
- ◆ Start-Up/Shut-Down: Movements produced between the minimum ambient temperature and the maximum start-up temperature. This is normally a very low number of cycles.
- Operating: Movements produced due to temperature fluctuations during system operation. This is typically a very small movement for a very large number of cycles.
- Excursion: Movement resulting from a worst case/ upset scenario, occurring during system operation. This is normally a very low number of cycles.

How To Use Graph

- Enter the graph horizontally at the number of anticipated cycles or the movement condition being considered.
- Move vertically until the graph is intercepted
- Move horizontally and read conversion factor.

Example:

Enter graph at 1,000 cycles; read C. F. of 1.30.

Single Expansion Joints for a Refinery in Asia

 Note: Maximum increase in movements for combined movement conditions shall not exceed 110% of catalog rated movements.

HOW TO SELECT AND ORDER

The first step in selecting the proper expansion joint assembly is to collect and organize as much information regarding the design and operating parameters of the system as possible. As a minimum the following information should be provided:

- ♦ Size of the line.
- ♦ Design pressure.
- ♦ Design temperature.
- ♦ Design movements and required cycle life.
- ♦ Overall length requirement, if any.
- ♦ Type of end connections.
- ♦ Bellows material.
- ♦ Pipe material.
- ♦ Flange specification and material.
- ♦ Type of expansion joint.
- ♦ Accessories.

Please refer to the data sheet on page 28.

EXAMPLE

- 1. Assume the following expansion joint design criteria:
 - a) Line size: 16-inch nominal diameter.
 - b) Design/operating pressure: 160 psig.
 - c) Design/operating temperature: 450° F.
 - d) Movements/cycle life:

 Installation: 0.25-inch compression;
 0.125-inch extension; 0.0625-inch lateral;
 0° angulation. Start-up/shut-down:
 1.0-inch compression; 0.25-inch lateral;
 0°angulation; 300 cycles. Operating: 0.25-inch compression; 0.063-inch lateral; 1.0° angulation; 10,000 cycles.
 - e) End connections: 150 lb ANSI raised face slip-on flanges; ASTM A-105 (carbon steel).

- f) Bellows material: A-240-T316.
- g) Type: Single; unrestrained (i.e. no tie rods, hinge, or gimbal hardware).
- h) Accessories: Liner and cover.
- 2. Turn to the Conversion Factor Graph and calculate equivalent catalog movements.

Condi-	No.	Axial	Lat.	Ang.	C.F.	Ed	quivale	nt
tion	Cycles					Axial	Lat.	Ang
Install	1	.375	.063	0	.49	.18	.03	0
Start-Up/ Shut- Down	300	1.0	.25	0	.62	.62	.16	0
Excur- sion	10,000	.25	.063	1.0	1.3	.33	.08	1.3

$$Total = 1.13 \ 0.27 \ 1.3$$

- 3. Refer to page 54, 16-inch nominal diameter single expansion joints, and go to the lowest pressure rating that is equal to or greater than specified design pressure (160 psig). Compare the total equivalent catalog movements to those shown in the catalog, keeping in mind that the tabulated movements in the catalog are for 3000 cycles for one movement only.
- 4. Select the shortest overall length that by inspection would appear to meet the movement criteria. Use the following formula to determine if the selected overall length is acceptable.

$$\frac{\text{EQUIV. AXIAL}}{\text{RATED AXIAL}} + \frac{\text{EQUIV. LATERAL}}{\text{RATED LATERAL}} + \frac{\text{EQUIV. ANGULAR}}{\text{RATED ANGULAR}} \le 1.0$$

200 psig rating/18-inch O.A.L.

$$\frac{1.13}{2.75} + \frac{0.27}{0.69} + \frac{1.30}{10.0} = 0.93$$

5. Since 0.93 is less than 1.0, the 200 psig/18-inch O.A.L. will meet the criteria for all the movement conditions specified in Step 1.

- Include the designations for the type (S for single), and liner (L), and cover (C) in the part number. All of the actual movements must be specified when combination ends or covers are specified.
- 7. On combination end units, the direction of flow must be specified.
- 8. The resulting U.S. Bellows part number would then be as follows (see table):

24" Single Tied Metallic Expansion Joints

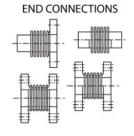
PART	Size	Pressure	LENGTH	END CONNECTIONS	Түре	Accessories	Material
Number							
			10				24.6
EXAMPLE	16	200	18	FF	5	LC	316

44" Expansion Joint for a Petrochemical Plant

66" I.D. Tied Universal Metallic Expansion Joint and Single Metallic Expansion Joints

78" Diameter Thick-Wall Flanged and Flued Head Expansion Joint

10' Square Fabric Expansion Joints for a Flue Gas Application


View our online catalog at: www.usbellows.com/catalog

3-Inch Nominal Diameter

Effective (Thrust) Area: 12.76 in² (82.32 cm²)

D I A	P R E	ov	ERALL	LENG	TH AN	D WEI	GHT		CONCUR		SPRING RATES				
M E T E	S S U R		NGED IDS		ELD IDS		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S	
R	E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	A L	E R A L	U L A R	0 N A L	
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶	
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵	
	170	6	7	12	6	9	7	0.92	0.28	10	304	560	11	0.0087	
	11.9	152	3.18	305	2.73	229	3.18	23.4	7.11	11	5	10	1.1	0.0088	
3	90	9	7	15	7	12	7	1.87	1.03	10	169	93	6	0.0048	
	6.3	229	3.18	381	3.18	305	3.18	47.5	26.2	11	3	2	0.6	0.0049	
	40	12	8	18	7	15	8	2.84	2.27	10	117	31	4	0.0033	
	2.8	305	3.64	457	3.18	381	3.64	72.1	57.7	11	2	1	0.4	0.0034	
	500	6	27	12	6	9	17	0.36	0.08	10	2020	7142	72	0.0214	
	35.1	152	12.3	305	2.73	229	7.73	9.14	2.03	11	36	128	7.3	0.0217	
3	500	9	28	15	7	12	18	0.77	0.36	10	943	726	33	0.0100	
	35.1	229	12.7	381	3.18	305	8.18	19.6	9.14	11	17	13	3.4	0.0101	
	250	12	29	18	8	15	19	1.3	0.93	10	615	201	22	0.0065	
	17.6	305	13.2	457	3.64	381	8.64	33	23.6	11	11	4	2.2	0.0066	

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- To increase cycle life or movements, please refer to graph on page 42.
 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- 5. Maximum test pressure: 1.5 X rated working pressure.
 6. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- 7. Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for
- information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33. FLANGES: ASTM A105.

40-170 psig Series: 150 lb ANSI B16.5

RFSO.

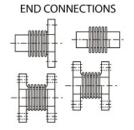
250-500 psig Series: 300 lb ANSI B16.5

RFSO

Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
PIPE: ASTM A53/A106.

40-70 psig Series: Std. Wt. Pipe. 250-500 psig Series: Std. Wt. Pipe. LINERS: A240-T304.

Covers: Carbon steel.



Effective (Thrust) Area: 16.12 in² (104 cm²)

3-1/2-INCH NOMINAL DIAMETER

D I A	P R E	ov	ERALL	LENG	STH AN	D WEI	GHT		CONCUR		SPRING RATES				
M E T E	S S U R		IGED DS		LD		INATION IDS	AXIAL	L A T	ΑNG	A X	L A T	A N G	T O R S	
R	E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	A L	E R A L	U L A R	0 N A L	
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶	
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵	
	170	6	23	12	8	9	15	0.9	0.23	10	349	873	16	0.0130	
	11.9	152	10.5	305	3.64	229	6.82	22.9	5.84	11	6	16	1.6	0.0132	
3.5	100	9	24	15	8	12	16	1.75	0.84	10	194	141	9	0.0072	
	7.0	229	10.9	381	3.64	305	7.27	44.5	21.3	11	3	3	0.9	0.0073	
	40	12	24	18	9	15	17	2.69	1.89	10	134	46	6	0.0049	
	2.8	305	10.9	457	4.09	381	7.73	68.3	48	11	2	1	0.6	0.0050	
	500	6	35	12	8	9	21	0.32	0.06	8	2710	13345	121	0.0361	
	35.1	152	15.9	305	3.64	229	9.55	8.13	1.52	9	48	239	12.3	0.0367	
3.5	500	9	36	15	9	12	22	0.72	0.29	10	1161	1182	52	0.0157	
3.5	35.1	229	16.4	381	4.09	305	10	18.3	7.37	11	21	21	5.3	0.0160	
	300	12	37	18	10	15	23	1.23	0.77	10	739	315	33	0.0100	
	21.1	305	16.8	457	4.55	381	10.5	31.2	19.6	11	13	6	3.4	0.0102	

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.
 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 8. Overall lengths and weights for unrestrained expansion joints only. Consult factory for
- information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33. FLANGES: ASTM A105.

40-170 psig Series: 150 lb ANSI B16.5

RFSO.

300-500 psig Series: 300 lb ANSI B16.5

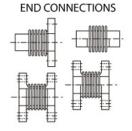
RFSO

Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.

PIPE: ASTM A53/A106.

40-70 psig Series: Std. Wt. Pipe.

300-500 psig Series: Std. Wt. Pipe


LINERS: A240-T304. Covers: Carbon steel.

4-INCH NOMINAL DIAMETER

Effective (Thrust) Area: 20.87 in² (134.64 cm²)

D P R A E S S	R	ov	'ERALL	LENG	TH AN	D WEI	GHT		CONCUR		SPRING RATES				
			NGED IDS		LD IDS		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S	
R	E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	COMP	E R A L	U L A R	A L	E R A L	U L A R	O N A L	
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶	
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵	
	100	6	27	12	9	9	18	1.23	0.27	10	222	774	13	0.0168	
	7.0	152	12.3	305	4.09	229	818	31.2	6.96	11	4	14	1.3	0.0170	
4	65	9	28	15	10	12	19	2.49	1.03	10	118	115	7	0.0089	
	4.6	229	12.7	381	4.55	305	8.64	63.2	26.2	11	2	2	0.7	0.0090	
	30	12	29	18	11	15	20	3.89	2.36	10	80	36	5	0.0060	
	2.1	305	13.2	457	5	381	9.09	98.8	59.9	11	1	1	0.5	0.0061	
	275	6	45	10	9	8	27	0.46	0.07	10	1549	12199	90	0.0433	
	19.3	152	20.5	254	4.09	203	12.3	11.7	1.78	11	28	218	9.2	0.0441	
4	275	9	47	13	11	11	29	1.07	0.36	10	664	960	38	0.0186	
	19.3	229	21.4	330	5	279	13.2	27.2	9.14	11	12	17	3.9	0.0189	
	175	12	48	16	12	14	30	1.81	0.96	10	423	247	24	0.0118	
	12.3	305	21.8	406	5.45	356	13.6	46	24.4	11	8	4	2.4	0.0120	

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- To increase cycle life or movements, please refer to graph on page 42.
 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- 5. Maximum test pressure: 1.5 X rated working pressure.
 6. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- 7. Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 8. Overall lengths and weights for unrestrained expansion joints only. Consult factory for
- information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

FLANGES: ASTM A105.

30-100 psig Series: 150 lb ANSI B16.5

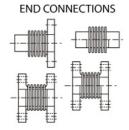
RFSO.

175-275 psig Series: 300 lb ANSI B16.5 **RFSO** Plate flanges and angle flanges available

for low pressure systems. Please refer to

page 32.
PIPE: ASTM A53/A106.
30-100 psig Series: Std. Wt. Pipe. 175-275 psig Series: Std. Wt. Pipe.

LINERS: A240-T304. Covers: Carbon steel.


Effective (Thrust) Area: 30.36 in² (195.82 cm²)

5-INCH NOMINAL DIAMETER

D I A	P R E	ov	'ERALL	LENG	TH AN	D WEI	GHT		CONCUR			SPRIN	G RATES	
M E T E	S S U R		NGED IDS		LD		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
R	E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	COMP	E R A L	OULAR	A L	E R A L	U L A R	0 N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	MM	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵
	100	6	31	12	12	9	22	1.17	0.2	10	277	1641	23	0.0319
	7.0	152	14.1	305	5.45	229	10	29.7	5.08	11	5	29	2.3	0.0325
5	85	9	32	15	13	12	23	2.28	0.75	10	147	226	12	0.0168
	6.0	229	14.5	381	5.91	305	10.5	57.9	19.1	11	3	4	1.2	0.0171
	35	12	34	18	14	15	24	3.76	1.85	10	100	69	8	0.0114
	2.5	305	15.5	457	6.36	381	10.9	95.5	47	11	2	1	0.8	0.0116
	275	6	57	10	12	8	35	0.39	0.04	7	2320	33633	196	0.0963
	19.3	152	25.9	254	5.45	203	15.9	9.91	1.02	8	42	602	19.9	0.0980
5	275	9	59	13	14	11	36	1.01	0.27	10	892	2070	75	0.0373
	19.3	229	26.8	330	6.36	279	16.4	25.4	6.86	11	16	37	7.6	0.0380
	235	12	61	16	15	14	38	1.66	0.71	10	552	500	47	0.0232
	16.5	305	27.7	406	6.82	356	17.3	42.2	18	11	10	9	4.8	0.0235

Phone: 713-731-0030

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- To increase cycle life or movements, please refer to graph on page 42.
 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.
 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 8. Overall lengths and weights for unrestrained expansion joints only. Consult factory for
- information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33. FLANGES: ASTM A105.

35-100 psig Series: 150 lb ANSI B16.5

RFSO.

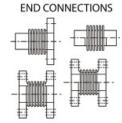
235-275 psig Series: 300 lb ANSI B16.5 RFSO

Plate flanges and angle flanges available for low pressure systems. Please refer to

page 32.

Pipe: ASTM A53/A106.

35-100 psig Series: Std. Wt. Pipe.


235-275 psig Series: Std. Wt. Pipe.

LINERS: A240-T304. Covers: Carbon steel.

6-INCH NOMINAL DIAMETER

Effective (Thrust) Area: 43.28 in² (279.16 cm²)

D I	P R	ov	'ERALI	LENG	TH AN	D WEI	GHT	_	CONCUR OVEMEN			SPRING	G RATES	
A M E T	E S S U		NGED IDS		ELD IDS		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	COMP	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	70	6	39	11	15	9	27	1.21	0.16	10	286	2841	34	0.0652
	4.9	152	17.7	279	6.82	229	12.3	30.7	4.06	11	5	51	3.5	0.0664
6	60	10	41	15	17	13	29	2.95	0.92	10	123	213	15	0.0278
	4.2	254	18.6	381	7.73	330	13.2	74.9	23.4	11	2	4	1.5	0.0283
	25	14	43	19	18	17	30	5.04	2.47	10	78	54	9	0.0177
	1.8	356	19.5	483	8.18	432	13.6	128	62.7	11	1	1	0.9	0.0180
	200	6	40	11	16	9	28	0.68	0.09	10	1330	13237	159	0.1116
	14.1	152	18.2	279	7.27	229	12.7	17.3	2.29	11	24	237	16.2	0.1135
6	200	10	43	15	19	13	31	1.63	0.5	10	570	992	68	0.0476
	14.1	254	19.5	61	8.64	330	14.1	40.4	12.4	11	10	18	6.9	0.0484
	105	14	45	19	21	17	33	2.79	1.37	10	363	252	43	0.0303
	7.4	356	20.5	483	9.55	432	15	70.9	34.8	11	6	5	4.4	0.0308
	500	6	80	10	16	8	48	0.23	0.02	4	10945	257320	1316	0.3506
	35.1	152	36.4	254	7.27	203	21.8	5.84	0.51	4	196	4605	133.8	0.3566
6	500	10	84	14	19	12	51	0.73	0.19	10	3284	7863	395	0.1067
	35.1	254	38.2	356	8.64	305	23.2	18.5	4.83	11	59	141	40.2	0.1085
	500	14	87	18	23	16	55	1.24	0.55	10	1932	1637	232	0.0629
	35.1	356	39.5	457	10.5	406	25	31.5	14	11	35	29	23.6	0.0640

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

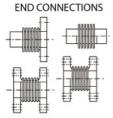
 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request. Refer to page 33.
FLANCES: ASTM A105.
25.70 Tails Series: 150 Ib ANSI B16.5 RFSO.

FLANGES: AŠTM A105.
25-70 psig Series: 150 lb ANSI B16.5 RFSO.
105-200 psig Series: 150 lb ANSI B16.5 RFSO.
500 psig Series: 150 lb ANSI B16.5 RFSO.
500 psig Series: 300 lb ANSI B16.5 RFSO.
Flate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pire: ASTM ASJA/106.
25-70 psig Series: Std. Wt. Pipe.
105-200 psig Series: Std. Wt. Pipe.
500 psig Series: Std. Wt. Pipe
Luners: A240-T304.
COVERS: Carbon steel.
Tie Robs, Hinges, Gimbals: Carbon steel



Effective (Thrust) Area: 69.74 in² (449.82 cm²)

8-INCH NOMINAL DIAMETER

D I	P R	ov	'ERALL	LENG	TH AN	D WEI	GHT	_	CONCUR			SPRING	G RATES	
A M E T	E S S U		NGED IDS		LD		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	COMP	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵
	75	8	63	13	23	10	43	1.81	0.29	10	251	1643	48	0.0948
	5.3	203	28.6	330	10.5	254	19.5	46	7.37	11	4	29	4.9	0.0965
8	50	12	65	17	25	14	45	3.65	1.1	10	133	244	26	0.0502
	3.5	305	29.5	432	11.4	356	20.5	92.7	27.9	11	2	4	2.6	0.0511
	25	16	67	21	27	18	47	5.69	2.53	10	90	77	17	0.0341
	1.8	406	30.5	533	12.3	457	21.4	145	64.3	11	2	1	1.7	0.0347
	200	8	64	13	25	19	44	1.02	0.16	10	1166	7641	225	0.1618
	14.1	203	29.1	330	11.4	254	20	26.9	4.32	11	21	137	22.9	0.1646
8	200	12	68	17	28	14	48	1.93	0.58	10	617	1134	119	0.0857
	14.1	305	30.9	432	12.7	356	21.8	49	14.7	11	11	20	12.1	0.0871
	105	16	71	21	32	18	51	3.1	1.37	10	420	357	81	0.0583
	7.4	406	32.3	533	14.5	457	23.2	78.7	34.8	11	8	6	8.2	0.0592
	400	8	120	12	25	10	72	0.39	0.04	5	8627	117663	1671	0.4596
	28.1	203	54.5	305	11.4	254	32.7	9.91	1.02	5	154	2106	169.9	0.4674
8	400	12	125	16	29	14	77	0.91	0.23	10	3595	9431	696	0.1938
	28.1	305	56.8	406	13.2	356	35	23.1	5.84	11	64	169	70.8	0.1971
	400	16	130	20	34	20	82	1.41	0.56	10	2270	2443	440	0.1228
	28.1	406	59.1	508	15.5	508	37.3	35.8	14.2	11	41	44	44.7	0.1249

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.

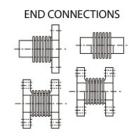
 Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.

- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request. Refer to page 33.
FLANGES: ASTM A105.

FLANGES: ASTM A105.


FLANGES: ÅŠTM A105.
25-70 psig Series: 150 lb ANSI B16.5 RFSO.
105-200 psig Series: 150 lb ANSI B16.5 RFSO.
400 psig Series: 300 lb ANSI B16.5 RFSO.
400 psig Series: 300 lb ANSI B16.5 RFSO.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pire: ASTM ASJA4106.
25-70 psig Series: Std. Wt. Pipe.
105-200 psig Series: Std. Wt. Pipe.
400 psig Series: Std. Wt. Pipe
LNERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HINGES, GIMBALS: Carbon Steel

10-Inch Nominal DIAMETER

Effective (Thrust) Area: 112.55 in² (725.95 cm²)

D I A	P R E	ov	'ERALI	LENG	TH AN	D WEI	GHT		CONCUR			SPRING	G RATES	
M E T E	S S U R		NGED IDS		ELD IDS		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
R	Е	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	100	12	94	16	37	14	66	2.74	0.62	10	427	1374	132	0.1975
	7.0	305	42.7	406	16.8	356	30	69.6	15.7	11	8	25	13.4	0.2009
10	60	18	99	22	43	20	71	5.08	2.01	10	256	273	79	0.1174
	4.2	457	45	559	19.5	508	32.3	129	51.1	11	5	5	8.0	0.1194
	30	24	104	28	48	26	76	7.58	4.27	10	183	96	57	0.0835
	2.1	610	47.3	711	21.8	660	34.5	193	108	11	3	2	5.8	0.0849
	275	12	172	15	40	14	106	1.23	0.23	10	2254	10547	699	0.4100
	19.3	305	78.2	381	18.2	356	48.2	31.2	5.84	11	40	189	71.1	0.4170
10	275	18	180	21	48	20	114	2.3	0.82	10	1214	1592	376	0.2199
10	19.3	457	81.8	533	21.8	508	51.8	58.4	20.8	11	22	28	38.2	0.2236
	325	24	213	27	80	26	147	3.4	1.78	10	1673	1023	523	0.1604
	22.8	610	96.8	686	36.4	660	66.8	86.4	45.2	11	30	18	53.2	0.1631

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- To increase cycle life or movements, please refer to graph on page 42.
- Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- 5. Maximum test pressure: 1.5 X rated working pressure.
 6. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

FLANGES: ASTM A105.

30-100 psig Series: 150 lb ANSI B16.5 RFSO. 275-325 psig Series: 300 lb ANSI B16.5

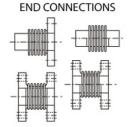
RFSO

Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.

PIPE: ASTM A53/A106.

30-100 psig Series: Std. Wt. Pipe. 275-325 psig Series: Std. Wt. Pipe.

LINERS: A240-T304. Covers: Carbon steel.



Effective (Thrust) Area: 156.06 in² (1006.59 cm²)

12-Inch Nominal Diameter

D I A	P R E	ov	'ERALI	LENG	STH AN	D WEI	GHT		CONCUR			SPRING	G RATES	
M E T E	8 8 U R		NGED IDS		ELD IDS		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
R	Е	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	СОМР	E R A L	U L A R	I A L	E R A L	U L A R	0 N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	80	12	137	16	45	14	91	2.94	0.53	10	416	2113	179	0.3358
	5.6	305	62.3	406	20.5	356	41.4	74.7	13.5	11	7	38	18.2	0.3415
12	60	18	144	22	52	20	98	5.41	1.75	10	238	378	102	0.1910
	4.2	457	65.5	559	23.6	508	44.5	137	44.5	11	4	7	10.4	0.1943
	25	24	151	28	58	26	104	8.57	4	10	166	128	71	0.1335
	1.8	610	68.6	711	26.4	660	47.3	218	102	11	3	2	7.2	0.1357
	210	12	243	16	49	14	146	1.41	0.21	10	1952	14794	840	0.6363
	14.8	305	110	406	22.3	356	66.4	35.8	5.33	11	35	265	85.4	0.6471
12	210	18	253	22	59	20	156	2.68	0.78	10	1051	2074	453	0.3387
'2	14.8	457	115	559	26.8	508	70.9	68.1	19.8	11	19	37	46.1	0.3445
	300	24	296	28	101	26	198	3.97	1.71	10	1447	1295	627	0.2447
	21.1	610	135	711	45.9	660	90	101	43.3	11	26	23	63.8	0.2488

Phone: 713-731-0030

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- 3. To increase cycle life or movements, please refer to graph on page 42.
- Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- 5. Maximum test pressure: 1.5 X rated working pressure.
 6. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

FLANGES: ASTM A105.

25-80 psig Series: 150 lb ANSI B16.5 RFSO. 210-300 psig Series: 300 lb ANSI B16.5

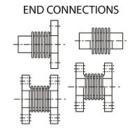
RESO

Plate flanges and angle flanges available for low pressure systems. Please refer to page 32. Pipe: ASTM A53/A106.

25-80 psig Series: Std. Wt. Pipe.

210-300 psig Series: Std. Wt. Pipe LINERS: A240-T304.

Covers: Carbon steel.


14-Inch Nominal Diameter

Effective (Thrust) Area: 184.96 in² (1193 cm²)

D I A	P R E	ov	'ERALL	LENG	TH AN	D WEI	GHT		CONCUR			SPRING	G RATES	
M E T E	8 8 U R		IGED IDS		LD IDS		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
R	E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵
	80	12	190	16	50	14	120	2.9	0.49	10	459	2639	234	0.4418
	5.6	305	86.4	406	22.7	356	54.5	73.7	12.4	11	8	47	23.8	0.4493
14	65	18	198	22	57	20	127	5.27	1.55	10	262	503	133	0.2531
	4.6	457	90	559	25.9	508	57.7	134	39.4	11	5	9	13.5	0.2574
	30	24	205	28	64	26	134	8.14	3.46	10	183	169	93	0.1767
	2.1	610	93.2	711	29.1	660	60.9	207	87.9	11	3	3	9.5	0.1797
	225	12	393	16	52	14	222	1.25	0.16	9	2509	24470	1281	0.9569
	15.8	305	179	406	23.6	356	101	31.8	4.06	10	45	438	130.3	0.9731
14	225	18	404	22	64	20	234	2.5	0.65	10	1255	3059	641	0.4784
'-	15.8	457	184	559	29.1	508	106	63.5	16.5	11	22	55	65.2	0.4866
	350	24	449	28	108	26	279	3.72	1.46	10	1682	1834	864	0.3374
	24.6	610	204	711	49.1	660	127	94.5	37.1	11	30	33	87.9	0.3431

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- 3. To increase cycle life or movements, please refer to graph on page 42.
- Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- 5. Maximum test pressure: 1.5 X rated working pressure.
 6. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

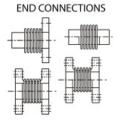
FLANGES: ASTM A105.

30-80 psig Series: 150 lb ANSI B16.5 RFSO. 225-350 psig Series: 300 lb ANSI B16.5 RESO

Plate flanges and angle flanges available for low pressure systems. Please refer to page 32. PIPE: ASTM A53/A106.

30-80 psig Series: Std. Wt. Pipe. 225-350 psig Series: Std. Wt. Pipe.

LINERS: A240-T304. Covers: Carbon steel.



Effective (Thrust) Area: 236.31 in² (1524.20 cm²)

16-Inch Nominal Diameter

D I	P R	ov	ERALI	LENG	TH AN	D WEI	GHT	_	CONCUR			SPRIN	G RATES	
A M E T	E S S U		NGED IDS		LD		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	COMP	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵
	75	12	131	18	60	15	95	3.52	0.65	10	421	2090	274	0.5297
	5.3	305	59.5	457	27.3	381	43.2	89.4	16.5	11	8	37	27.9	0.5387
16	50	18	139	24	68	21	103	6.04	1.8	10	263	491	171	0.3297
	3.5	457	63.2	610	30.9	46.8	1.53	45.7	11	11	5	9	17.4	0.3353
	25	24	147	30	76	27	112	8.95	3.71	10	191	186	125	0.2393
	1.8	610	66.8	762	34.5	686	50.9	22.7	94.2	11	3	3	12.7	0.2434
	200	12	213	15	62	14	137	1.40	0.2	10	2469	22616	1612	1.2211
	14.1	305	96.8	381	28.2	356	62.3	37.6	5.08	11	44	405	163.9	1.2419
16	200	18	226	21	75	20	150	2.75	0.69	10	1329	3531	868	0.6575
	14.1	457	103	533	34.1	508	68.2	69.9	17.5	11	24	63	88.3	0.6687
	150	24	239	27	88	26	163	4.21	1.54	10	910	1131	594	0.4499
	10.5	610	109	686	40	660	74.1	107	39.1	11	16	20	60.4	0.4575
	400	12	408	14	73	13	240	1.15	0.12	8	5789	86365	3800	1.5335
	28.1	305	185	356	33.2	330	109	29.2	3.05	8	104	1546	386.5	1.5596
16	400	18	433	20	98	19	265	2.36	0.52	10	2894	9877	1900	0.7591
'	28.1	457	197	508	44.5	483	120	59.9	13.2	11	52	177	193.2	0.7720
	400	24	458	26	123	25	291	3.6	1.21	10	1930	2844	1267	0.5044
	28.1	610	208	660	55.9	635	132	91.4	30.7	11	35	51	128.9	0.5130

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.

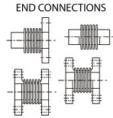
 Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.

Phone: 713-731-0030

- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request.
Refer to page 33.
FLANGES: ASTM A105.


FLANGES: ASTM A105.

FLANGES: AŠTM A105.
25-75 psig Series: 150 lb ANSI B16.5 RFSO.
150-200 psig Series: 150 lb ANSI B16.5 RFSO.
400 psig Series: 300 lb ANSI B16.5 RFSO.
400 psig Series: 300 lb ANSI B16.5 RFSO.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pire: ASTM ASJA4106.
25-75 psig Series: Std. Wt. Pipe.
150-200 psig Series: Std. Wt. Pipe.
400 psig Series: Std. Wt. Pipe
LNERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HINGES, GIMBALS: Carbon Steel

18-Inch Nominal Diameter

Effective (Thrust) Area: 293.95 in² (1896 cm²)

						-	-							
D I	P R	ov	'ERALI	LENG	TH AN	D WEI	GHT	_	CONCUR OVEMEN			SPRING	RATES	
A M E T	E S S U		NGED IDS		LD IDS		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	75	12	134	18	67	15	101	3.49	0.57	10	476	2938	386	0.7533
	5.3	305	60.9	457	30.5	381	45.9	88.6	14.5	11	9	53	39.3	0.7
18	50	18	144	24	77	21	110	5.93	1.59	10	297	690	241	0.4688
	3.5	457	65.5	610	35	533	50	151	40.4	11	5	12	24.5	0.4768
	25	24	153	30	86	27	119	8.81	3.27	10	216	261	175	0.3403
	1.8	610	69.5	762	39.1	686	54.1	224	83.1	11	4	5	17.8	0.3461
	200	12	279	15	70	14	174	1.42	0.16	9	2787	35476	2265	1.7567
	14.1	305	127	381	31.8	356	79.1	36.1	4.06	10	50	635	2304	1.7866
18	200	18	293	21	84	20	189	2.72	0.59	10	1501	5260	1219	0.9406
	14.1	457	133	533	38.2	508	85.9	69.1	15	11	27	94	124.0	0.9566
	175	24	308	27	99	26	203	4.07	1.31	10	1027	1654	834	0.6422
	12.3	610	140	686	45	660	92.3	103	33.3	11	18	30	84.8	0.6531
	400	12	527	13	78	13	302	0.99	0.09	6	7834	176001	6400	2.5583
	28.1	305	240	330	35.5	330	137	25.1	2.29	7	140	3150	650.9	2.6018
18	400	18	555	19	106	19	331	2.18	0.41	10	3563	16529	2909	1.1629
'	28.1	457	252	483	48.2	483	150	55.4	10.4	11	64	296	295.8	1.1827
	400	24	584	25	135	25	359	3.37	0.99	10	2305	4478	1882	0.7525
	28.1	610	265	635	61.4	635	163	85.6	25.1	11	41	80	191.4	0.7652

GENERAL NOTES

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request. Refer to page 33.
FLANCES: ASTM A105.
25 TE rais Series: 125 Ih ANSI B16.5 RFSO.

FLANGES: AŠTM A105.
25-75 psig Series: 125 lb ANSI B16.5 RFSO.
175-200 psig Series: 150 lb ANSI B16.5 RFSO.
400 psig Series: 300 lb ANSI B16.5 RFSO.
400 psig Series: 300 lb ANSI B16.5 RFSO.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pire: ASTM ASJA4106.
25-75 psig Series: Std. Wt. Pipe.
175-200 psig Series: Std. Wt. Pipe.
400 psig Series: Std. Wt. Pipe
Luners: A240-T304.
COVERS: Carbon steel.
Tie Robs, Hinges, Gimbals: Carbon steel



Effective (Thrust) Area: 357.87 in² (2308.26 cm²)

20-INCH NOMINAL DIAMETER

D I	P R	ov	'ERALI	LENG	TH AN	D WEI	ЭНТ	_	CONCUR OVEMEN			SPRING	G RATES	
A M E T	E S S U		NGED IDS		ELD IDS		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	70	12	156	18	75	15	116	3.5	0.52	10	530	3989	524	1.0323
	4.9	305	70.9	457	34.1	381	52.7	88.9	13.2	11	9	71	53.3	1.0499
20	70	18	166	24	85	21	126	5.6	1.36	10	331	937	327	0.6424
	4.9	457	75.5	610	38.6	533	57.3	142	34.5	11	6	17	33.3	0.6534
	35	24	177	30	96	27	136	8.53	2.87	10	241	354	238	0.4663
	2.5	610	80.5	762	43.6	686	61.8	217	72.9	11	4	6	24.2	0.4743
	200	12	350	14	77	13	214	1.39	0.14	8	3106	54098	3074	2.4362
	14.1	305	159	356	35	330	97.3	35.3	3.56	9	56	968	312.6	2.4776
20	200	18	367	20	94	19	230	2.64	0.51	10	1672	7583	1655	1.2968
20	14.1	457	167	508	42.7	483	105	67.1	13	11	30	136	1683	1.3188
	200	24	383	26	110	25	246	3.86	1.1	10	1144	2338	1132	0.8835
	14.1	610	174	660	50	635	112	98	27.9	11	20	42	115.1	0.8985
	400	12	659	13	105	13	382	0.94	0.07	5	8729	294625	8677	3.5831
	28.1	305	300	330	47.7	330	174	23.9	1.78	6	156	5272	882.5	3.6441
20	400	18	691	19	136	19	413	2.13	0.35	10	3968	24597	3944	1.6074
	28.1	457	314	483	61.8	483	188	54.1	8.89	11	71	440	401.1	1.6348
	400	24	722	25	168	25	445	3.37	0.87	10	2567	6445	2552	1.0361
	28.1	610	328	635	76.4	635	202	85.6	22.1	11	46	115	259.5	1.0537

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.

 Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.

- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request.
Refer to page 33.
FLANGES: ASTM A105.
FLANGES: ASTM A105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

105.

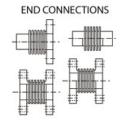
105.

105.

105.

105.

105.


105.

FLANGES: ÅŠTM A105.
35-70 psig Series: 125 lb ANSI B16.5 RFSO.
200 psig Series: 150 lb ANSI B16.5 RFSO.
400 psig Series: 300 lb ANSI B16.5 RFSO.
Halte flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pire: ASTM ASJA106.
35-70 psig Series: Std. Wt. Pipe.
200 psig Series: Std. Wt. Pipe.
400 psig Series: Std. Wt. Pipe.
LNERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HINGES, GIMBALS: Carbon Steel

22-Inch Nominal Diameter

Effective (Thrust) Area: 432.67 in² (2790.72 cm²)

D I	P R	ov	'ERALI	LENG	TH AN	D WEI	GHT	_	CONCUR OVEMEN			SPRING	G RATES	
A M E T	E S S U		NGED IDS		LD IDS		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵
	60	12	171	17	82	15	127	3.64	0.44	10	487	5534	582	1.4134
	4.2	305	77.7	432	37.3	381	57.7	92.5	11.2	11	9	99	59.2	1.4374
22	60	18	184	23	94	21	139	6.07	1.25	10	292	1141	349	0.8441
	4.2	457	83.6	584	42.7	533	63.2	154	31.8	11	5	20	35.5	0.8584
	30	24	196	29	107	27	151	9.48	2.77	10	209	408	249	0.6017
	2.1	610	89.1	737	48.6	686	68.6	2.41	70.4	11	4	7	25.3	0.6119
	165	12	391	14	84	13	237	1.45	0.12	7	2994	74513	3583	3.4407
	11.6	305	178	356	38.2	330	108	36.8	3.05	8	54	1333	364.4	3.4992
22	165	18	411	20	103	19	257	2.41	0.49	10	1497	8922	1792	1.7127
	11.6	457	187	508	46.8	483	117	73.9	12.4	11	27	160	182.2	1.7419
	165	24	430	26	123	25	276	4.36	1.1	10	998	2606	1194	1.1401
	11.6	610	195	660	55.9	635	125	111	27.9	11	18	47	121.4	1.1595
	350	12	769	12	112	12	441	0.92	0.05	5	9012	465407	10831	5.3572
	24.6	305	350	305	50.9	305	200	23.4	1.27	5	161	8329	1101.5	5.4483
22	350	18	807	18	150	18	478	2.3	0.33	10	3605	29786	4332	2.1429
	24.6	457	367	457	68.2	457	217	58.4	8.38	11	65	533	440.6	2.1793
	350	24	844	24	187	24	516	3.69	0.84	10	2253	7272	2708	1.3393
	24.6	610	384	610	85	610	235	93.7	21.3	11	40	130	275.4	1.3621

GENERAL NOTES

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

- To combine axial, lateral and angular movements, please refer to page 43.

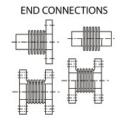
 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request. Refer to page 33.
Refer to page 33.
FLMORES: ASTIM A105.
30-60 psig Series: 125 lb Lt. Wt. FFSO.
165 psig Series: 150 lb ANSI B16.5 RFSO.
350 psig Series: 300 lb ANSI B16.5 RFSO.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pipe: ASTIM A53/A106/28-5.
30-60 psig Series: 0.375-inch wall.
165 psig Series: 0.500-inch wall.
LIMERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HIMGES, GIMBALS: Carbon steel



Effective (Thrust) Area: 509.54 in² (3286.53 cm²)

24-Inch Nominal Diameter

D I	P R	ov	ERALL	LENG	TH AN	D WEI	GHT	_	CONCUR			SPRING	G RATES	
A M E T	E S S U		IGED DS		LD IDS		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
R R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	COMP	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	60	12	251	17	90	15	170	3.6	0.4	10	532	7129	749	1.8337
	4.2	305	114	432	40.9	381	77.3	91.4	10.2	11	10	128	76.2	1.8649
24	60	18	265	23	103	21	184	6.06	1.15	10	319	1470	449	1.0951
	4.2	457	120	584	46.8	533	83.6	154	29.2	11	6	26	45.7	1.1137
	35	24	278	29	116	27	197	9.27	2.49	10	228	525	321	0.7806
	2.5	610	126	737	52.7	686	89.5	235	63.2	11	4	9	32.6	0.7939
	160	12	463	14	92	13	277	1.42	0.1	6	3273	104888	4615	4.5021
	11.2	305	210	356	41.8	330	126	36.1	2.54	7	59	1877	469.3	4.5787
24	160	18	484	20	113	19	298	2.89	0.44	10	1636	11996	2307	2.2311
	11.2	457	220	508	51.4	483	135	73.4	11.2	11	29	21.5	234.6	2.2690
	160	24	505	26	134	25	319	4.37	1	10	1091	3454	1538	1.4830
	11.2	610	230	660	60.9	635	145	1.11	25.4	11	20	62	156.4	1.5082
	350	12	981	12	122	12	551	0.88	0.04	4	9849	729392	13940	7.0853
	24.6	305	446	305	55.5	305	250	22.4	1.02	4	176	13053	1417.7	7.2057
24	350	18	1022	18	163	18	592	2.24	0.28	10	3940	41384	5576	2.7990
	24.6	457	465	457	74.1	457	269	56.9	7.11	11	71	741	567.1	2.8466
	350	24	1063	24	204	24	633	3.65	0.75	10	2462	9815	3485	1.7440
	24.6	610	483	610	92.7	610	288	92.7	19.1	11	44	176	354.4	1.7736

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.

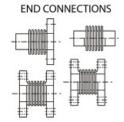
 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.

 Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.

- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.


Materials
Bellows: A240-T304. Alternate materials available upon request.
Refer to page 33.
FLANCES: ASTM A105.

FLANGES: ÅŠTM A105.
35-60 psig Series: 125 lb ANSI B16.5 RFSO.
160 psig Series: 150 lb ANSI B16.5 RFSO.
350 psig Series: 300 lb ANSI B16.5 RFSO.
350 psig Series: 300 lb ANSI B16.5 RFSO.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pire: ASTM ASJA106/A285-C.
35-60 psig Series: Std. Wt. Pipe.
160 psig Series: Std. Wt. Pipe.
350 psig Series: Std. Wt. Pipe.
LNERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HINGES, GIMBALS: Carbon Steel

26-INCH NOMINAL DIAMETER

Effective (Thrust) Area: 592.71 in² (3822.98 cm²)

D I	P R	0/	/ERALL	LENG	TH AN	D WEIG	ЭНТ	_	ONCUR			SPRIN	G RATES	
A M E T	E S S U		NGED IDS		LD IDS		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	MM	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	60	12	273	16	97	14	185	3.57	0.37	10	577	9005	946	2.3301
	4.2	305	124	406	44.1	356	84.1	90.7	9.4	11	10	161	96.2	2.3697
26	60	18	287	22	112	20	200	5.99	1.06	10	346	1857	568	1.3915
	4.2	457	130	559	50.9	508	90.9	152	26.9	11	6	33	57.8	1.4152
	40	24	302	28	126	26	214	9.11	2.27	10	247	663	406	0.9919
	2.8	610	137	711	57.3	660	97.3	231	57.7	11	4	12	41.3	1.0088
	165			16	107			1.93	0.19	8	2664	46954	4371	4.2135
	11.6			406	48.6			49	4.83	9	48	840	444.5	4.2852
26	165			22	130			3.37	0.57	10	1522	8761	2498	2.4077
-	11.6		omer to	559	59.1		mer to / flange	85.6	14.5	11	27	157	254.0	2.4487
	165	config	uration.	28	153	config	uration.	4.82	1.17	10	1066	3005	1748	1.6854
	11.6		nts and L. will	711	69.5		nts and L. will	122	29.7	11	19	54	177.8	1.7141
	335		nished receipt	16	162		nished receipt	1.84	0.18	8	5343	94509	8797	4.4038
	23.5	. of	this .	406	73.6	of	this	46.7	4.57	9	96	1691	894.7	4.4786
26	335	intorr	nation.	22	207	Intorn	nation.	3.21	0.55	10	3053	17634	5027	2.5164
-	23.5			559	94.1			81.5	14	11	55	316	511.2	2.5592
	335			28	251			4.59	1.11	10	2137	6049	3519	1.7615
	23.5			711	114			117	28.2	11	38	108	357.9	1.7915

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

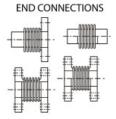
 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request.
Refer to page 33.
FLANCES: ASTM A105.
10.00 rais Series: 125 lb Lt. Wt. FFSO.

FLawes: ASTM A105.
40-60 psig Series: 125 lb Lt. Wt. FFSO.
For 165 psig and 335 psig Series: Customer to specify actual flanges required.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pire: ASTM A53/A106.
40-60 psig Series: 0.375-inch wall.
1655 psig Series: 0.575-inch wall.
1355 psig Series: 0.500-inch wall.
Liners: A240-T304.
COVERS: Carbon steel.
Tie Robs, Hinges, Gimbals: Carbon steel



Effective (Thrust) Area: 682.15 in² (4399.9 cm²)

28-Inch Nominal Diameter

D I	P R	٥٧	/ERALL	LENG	TH ANI) WEI	SHT	_	ONCUR OVEMEN			SPRIN	G RATES	
A M E T	E S S U		NGED IDS		LD IDS		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
R R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	60	12	305	16	105	14	205	3.57	0.34	10	623	11183	1175	2.9088
	4.2	305	139	406	47.7	356	93.2	90.7	8.64	11	11	200	119.5	2.9582
28	60	18	320	22	120	20	220	5.95	0.98	10	374	2306	705	1.7371
-	4.2	457	145	559	54.5	508	100	151	24.9	11	7	41	71.7	1.7666
	40	24	336	28	136	26	236	9.04	2.1	10	267	824	504	1.2383
	2.8	610	153	711	61.8	660	107	230	53.3	11	5	15	51.3	1.2594
	16			16	116			1.92	0.17	8	2873	58303	5427	5.2585
	11.2			406	52.7			48.8	4.32	8	51	1043	551.9	5.3479
28	160			22	140			3.37	0.53	10	1642	10879	3101	3.0048
	11.2		mer to	559	63.6		mer to	85.6	13.5	11	29	195	315.4	3.0559
	160	config	uration.	28	165	config	uration.	4.81	1.09	10	1149	3731	2171	2.1034
	11.2		nts and L. will	711	75		nts and L. will	122	27.7	11	21	67	220.8	2.1391
	315		nished receipt	16	175		nished receipt	1.81	0.16	7	5762	117299	10919	5.4916
	22.1	· of	this .	406	79.5	of	this .	46	4.06	8	103	2099	1110.5	5.5849
28	315	inforn	nation.	22	223	inforn	nation.	3.25	0.51	10	3293	21887	6239	3.1380
20	22.1			559	101			82.6	13	11	59	392	634.5	3.1914
	315			28	271			4.64	1.05	10	2305	7507	4367	2.1966
	22.1			711	123			118	26.7	11	41	134	444.1	2.2340

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.

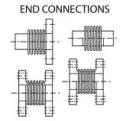
 Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.

Phone: 713-731-0030

- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.

Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.


MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request.
Refer to page 33.
FLANGES: ASTM A105.
FLANGES: ASTM A105.

FLANGES: ÅSTM A105.
40-60 psig Series: 125 lb Lt. Wt. FFSO.
For 160 psig and 315 psig Series: Customer to specify actual flanges required.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pire: ASTM A285-C.
40-60 psig Series: 0.375-inch wall.
165 psig Series: 0.375-inch wall.
165 psig Series: 0.500-inch wall.
LNERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HINGES, GIMBALS: Carbon steel

30-INCH NOMINAL DIAMETER

Effective (Thrust) Area: 784.07 in² (5057.25 cm²)

D I	P R	0\	/ERALL	LENG	TH ANI) WEIG	ЭНТ	_	ONCUR			SPRIN	G RATES	
A M E T	E S S U		NGED IDS		LD DS		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	50	12	328	16	114	14	221	3.98	0.36	10	514	10605	1114	3.3278
	3.5	305	149	406	51.8	356	100	101	9.14	11	9	190	113.3	3.3844
30	50	18	346	22	132	20	239	6.8	1.04	10	308	2187	669	1.9880
	3.5	457	157	559	60	508	109	173	26.4	11	6	39	68.0	2.0218
	35	24	364	28	150	26	257	9.62	2.08	10	220	781	478	1.4174
	2.5	610	165	711	68.2	660	117	244	52.8	11	4	14	48.6	1.4415
	135			16	127			2.27	0.19	8	2370	55283	5146	6.0143
	9.5			406	57.7			57.7	4.83	9	42	989	523.3	6.1165
30	135			22	155			3.97	0.59	10	1354	10315	2941	3.4367
	9.5		omer to	559	70.5		mer to	101	15	11	24	185	299.1	3.4952
	135	config	uration.	28	183	config	uration.	5.67	1.2	10	948	3538	2058	2.4057
	9.5		nts and L. will	711	83.2		nts and L. will	144	30.5	11	17	63	209.3	2.4466
	290		nished receipt	16	193		nished receipt	2.12	0.18	8	4752	111181	10349	6.2620
	20.4	of	this .	406	87.7	of	this	53.8	4.57	9	85	1990	1052.5	6.3684
30	290	ıntorn	nation.	22	248	ıntorn	nation.	3.7	0.55	10	2715	20745	5914	3.5783
	20.4			559	113			94	14	11	48	371	601.5	3.6391
	290			28	303			5.29	1.12	10	1901	7116	4140	2.5048
	20.4			711	138			134	28.4	11	34	127	421.0	2.5474

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

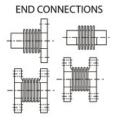
 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request. Refer to page 33.
FLANGES: ASTM A105.
BLL MR FESO.

FLANCES: ASTM A105.
35-50 psig Series: 125 lb Lt. Wt. FFSO.
For 135 psig and 290 psig Series: Customer to specify actual flanges required.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pire: ASTM A285-C.
35-50 psig Series: 0.375-inch wall.
1350 psig Series: 0.375-inch wall.
290 psig Series: 0.500-inch wall.
Liners: A240-T304.
COVERS: Carbon steel.
Tie Robs, Hinges, Gimbals: Carbon steel



Effective (Thrust) Area: 886.47 in² (5717.73 cm²)

32-Inch Nominal Diameter

D I	P R	٥٧	/ERALL	LENG	TH ANI) WEI	SHT	_	ONCUR			SPRING	G RATES	
A M E T	E S S U		NGED IDS		LD IDS		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	50	12	440	16	122	14	281	3.98	0.34	10	549	12811	1346	4.0372
	3.5	305	200	406	55.5	356	128	101	8.64	11	10	229	136.9	4.1059
32	50	18	459	22	141	20	300	6.8	0.98	10	329	2641	808	2.4118
"-	3.5	457	209	559	64.1	508	136	173	24.9	11	6	47	82.2	2.4528
	35	24	478	28	160	26	319	9.62	1.96	10	235	944	577	1.7195
	2.5	610	217	711	72.7	660	145	244	49.8	11	4	17	58.7	1.7487
	135			16	135			2.26	0.18	8	2531	66771	6215	7.2947
	9.5			406	61.4			57.4	4.57	9	45	1195	632.1	7.4168
32	135			22	165			3.96	0.55	10	1446	12459	3552	4.1684
02	9.5		mer to	559	75		mer to	101	14	11	226	223	361.2	4.2393
	135	config	uration.	28	196	config	uration.	5.66	1.13	10	1013	4273	2486	2.9179
	9.5		nts and L. will	711	89.1		nts and L. will	144	28.7	11	18	76	252.8	2.9675
	290		nished receipt	16	206		nished receipt	2.11	0.17	7	5074	134238	12495	7.5907
	20.4	· of	this .	406	93.6	of	this .	53.6	4.32	8	91	2402	1270.7	7.7197
32	290	inforn	nation.	22	265	inforn	nation.	3.7	0.51	10	2900	25047	7140	4.3375
32	20.4			559	120			94	13	11	52	448	726.1	4.4113
	290			28	323			5.28	1.05	10	2030	8591	4998	3.0363
	20.4			711	147			134	26.7	11	36	154	508.3	3.0879

- GENERAL NOTES

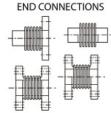
 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.

 Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.


- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.
FLMORES: ASTIM A105.
35-50 psig Series: 125 lb Lt. Wt. FFSO.
For 135 psig and 290 psig Series: Customer to specify actual flanges required.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Piper: ASTIM A285-C.
35-50 psig Series: 0.375-inch wall.
135 psig Series: 0.375-inch wall.
290 psig Series: 0.500-inch wall.
LINERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HINGES, GIMBALS: Carbon steel

34-Inch Nominal Diameter

Effective (Thrust) Area: 995 in² (6420 cm²)

D	P R	0/	/ERALL	LENG	TH AN	D WEIG	SHT	_	ONCUR			SPRING RATES				
A M E T	E S U	FLANGED ENDS		WELD ENDS		COMBINATION ENDS		AXIAL	L A T	ΑNG	A X	L A T	A N G	T O R S		
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	0 N A L		
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶		
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵		
	50	12 462		16	130	14	296	3.98	0.32	10	584	15302	1608	4.8409		
	3.5	305	210	406	59.1	356	135	101	8.13	11	10	274	163.5	4.9232		
34	50	18	482	22	150	20	316	6.8	0.93	10	350	3155	965	2.8919		
	3.5	457	219	559	68.2	508	144	173	23.6	11	6	56	98.1	2.9411		
	40	24	503	28	170	26	336	9.62	1.85	10	250	1127	689	2.0618		
	2.8	610	229	711	77.3	660	153	244	47	11	4	20	70.1	2.0968		
	135			16	143			2.25	0.17	7	2693	79749	7423	8.7452		
	9.5			406	65			57.2	4.32	8	48	1427	754.9	8.8938		
34	135			22	176			3.93	0.52	10	1539	14880	4242	4.9972		
	9.5		omer to	559	80		mer to y flange	99.8	13.2	11	28	266	431.4	5.0822		
	135	config	uration.	28	208	config	uration.	5.62	1.05	10	1077	5104	2969	3.4981		
	9.5		hts and .L. will	711	94.5		nts and L. will	143	26.7	11	19	91	301.9	3.5575		
	275		rnished receipt	16	219	1	nished receipt	2.12	0.16	7	5397	160280	14920	9.0951		
	19.3	upon receipt of this information.		406	99.5	of	this	53.8	4.06	8	97	2868	1517.4	9.2498		
34	275			22	281	information.		3.71	0.49	10	3084	29907	8525	5.1972		
"	19.3			559	128			94.2	12.4	11	55	535	867.0	5.2856		
	344			24	344			5.3	0.99	10	2159	10258	5968	3.6381		
	19.3			610	156			135	25.1	11	39	184	606.9	3.6999		

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

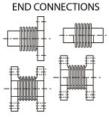
MATERIALS

BELLOWS: A240-T304. Alternate materials available upon request.

Refer to page 33.

FLANGES: ASTM A105.

FLAMESE: ASTM A105.
40-50 psig Series: 125 lb Lt. Wt. FFSO.
For 135 psig and 275 psig Series: Customer to specify actual flanges required.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32
Pire: ASTM A285-C.
40-50 psig Series: 0.375-inch wall.
1355 psig Series: 0.375-inch wall.
275 psig Series: 0.500-inch wall.
Liners: A240-T304.
COVERS: Carbon steel.
Tie Robs, Hinges, Gimbals: Carbon steel



Effective (Thrust) Area: 1110.13 in² (7160.34 cm²)

36-INCH NOMINAL DIAMETER

D I	P R	٥٧	/ERALL	LENG	TH ANI) WEIG	ЭНТ		CONCUR OVEMEN		SPRING RATES				
A M E T	E S S U	FLANGED ENDS		WELD ENDS		COMBINATION ENDS		AXIAL	L A T	A N G	A X	L A T	A N G	T O R S	
R R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L	
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶	
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵	
	50	12	504	16	137	14	321	3.98	0.3	10	619	18098	1902	5.7447	
	3.5	305	229	406	62.3	356	146	101	7.62	11	11	324	13.4	5.8424	
36	50	18	525	22	159	20	342	6.8	0.88	10	371	3731	1141	3.4318	
	3.5	457	239	559	72.3	508	155	173	22.4	11	7	67	116.0	3.4902	
	40	24	547	28	180	26	364	9.62	1.75	10	265	1333	815	2.4467	
	2.8	610	249	711	81.8	660	165	244	44.5	11	5	24	82.9	2.4883	
	135			16	152			2.25	0.16	7	2854	94308	8779	10.3761	
	9.5			406	69.1			57.2	4.06	8	51	1688	892.8	10.5525	
36	135]		22	186			3.93	0.49	10	1631	17597	5016	5.9292	
	9.5		mer to	559	84.5		mer to / flange	99.8	12.4	11	29	315	510.1	6.0300	
	135	config	uration.	28	220	config	uration.	5.61	1	10	1142	6036	3511	4.1504	
	9.5		nts and L. will	711	100		nts and L. will	142	25.4	11	20	108	357.1	4.2210	
	250		nished	16	232		nished receipt	2.15	0.15	7	5720	189490	17639	10.7863	
	17.6	upon receipt of this information.		406	105	of	this	54.6	3.81	7	102	3391	1793.9	10.9697	
36	250			22	298	ıntorn	nation.	3.77	0.47	10	3269	35357	10079	6.1636	
	17.6			559	135			95.8	11.9	11	59	633	1025.0	6.2684	
	250			28	364			5.38	0.95	10	2288	12127	7055	4.3145	
	17.6			711	165			137	24.1	11	41	217	717.5	4.3879	

- GENERAL NOTES

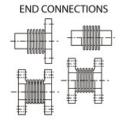
 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.

 Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.


- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.
FLMORES: ASTIM A105.
40-50 psig Series: 125 lb Lt. Wt. FFSO.
For 135 psig and 250 psig Series: Customer to specify actual flanges required.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Piper: ASTIM A285-C.
40-50 psig Series: 0.375-inch wall.
135 psig Series: 0.375-inch wall.
250 psig Series: 0.500-inch wall.
Liners: A240-T304.
Covers: Carbon steel.
Tie Roos, Hinces, Gimbals: Carbon steel

38-INCH NOMINAL DIAMETER

Effective (Thrust) Area: 1231.38 in² (7942.40 cm²)

D	P R	0/	/ERALL	. LENG	TH ANI	D WEIG	SHT		ONCUR OVEMEN		SPRING RATES				
A M E T	E S U		FLANGED ENDS		WELD ENDS		COMBINATION ENDS		L A T	ΑNG	A X	L A T	A N G	T O R S	
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	1 O N A L	
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶	
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	MM	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵	
	45	12	566	16	145	14	355	3.98	0.29	10	654	21214	2229	6.7546	
	3.2	305	257	406	65.9	356	161	101	7.37	11	12	380	226.7	6.8694	
38	45	18	589	22	168	20	378	6.8	0.83	10	392	4374	1338	4.0351	
	3.2	457	268	559	76.4	508	172	173	21.1	11	7	78	136.1	4.1037	
	45	24	611	28	190	26	401	9.62	1.66	10	280	1563	955	2.8769	
	3.2	610	278	711	86.4	660	182	244	42.2	11	5	28	97.1	2.9258	
	130			16	160			2.26	0.15	7	3015	110538	10289	12.1982	
	9.1			406	72.7			57.4	3.81	7	54	1978	1046.4	12.4056	
38	130			22	196			3.96	0.47	10	1723	20625	5880	6.9704	
	9.1		omer to y flange	559	89.1		mer to / flange	101	11.9	11	31	369	598.0	7.0889	
	130	config	uration.	28	232	configi	uration.	5.65	0.95	10	1206	7074	4116	4.8793	
	9.1		nts and L. will	711	105		nts and L. will	144	24.1	11	22	127	418.6	4.9622	
	250		nished	16	245		nished	2.15	0.14	6	6043	222048	20669	12.6752	
	17.6	upon receipt of this information.		406	111	upon receipt of this information.		54.6	3.56	7	108	3974	2102.0	12.8906	
38	250			22	315			3.77	0.44	10	3453	41432	11811	7.2429	
"	17.6			559	143			95.8	11.2	11	62	741	1201.2	7.3661	
	250			28	384			5.38	0.91	10	2417	14211	8268	5.0701	
	17.6			711	175				23.1	11	43	254	840.9	5.1563	

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

- To combine axial, lateral and angular movements, please refer to page 43.

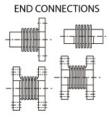
 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request. Refer to page 33.
FLANGES: ASTM A105.
45 psig Series: 125 lb Lt. Wt. FFSO.
For 130 psig and 250 psig Series: Customer to specify actual flanges required.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pipe: ASTM A285-C.
45 psig Series: 0.375-inch wall.
130 psig Series: 0.375-inch wall.
250 psig Series: 0.500-inch wall.
LINERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HINGES, GIMBALS: Carbon steel



Effective (Thrust) Area: 1358.92 in² (8771.48 cm²)

40-Inch Nominal Diameter

D I	P R E S S U	٥٧	/ERALL	. LENG	TH ANI) WEI	GHT	_	ONCUR		SPRING RATES				
A M E T		FLANGED ENDS		WELD ENDS		COMBINATION ENDS		AXIAL	L A T	A N G	A X	L A T	A N G	T O R S	
R R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L	
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶	
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵	
	45	12	598	16	153	14	375	3.98	0.27	10	689	24670	2592	7.8763	
	3.2	305	272	406	69.5	356	170	101	6.86	11	12	441	263.6	8.0102	
40	45	18	622	22	177	20	399	6.8	0.79	10	413	5086	1555	4.7052	
"	3.2	457	283	559	80.5	508	181	173	20.1	11	7	91	158.1	4.7852	
	45	24	645	28	200	26	423	9.62	1.58	10	295	1818	1111	3.3546	
	3.2	610	293	711	90.9	660	192	244	40.1	11	5	33	113.0	3.4117	
	120			16	169			2.29	0.15	6	3177	128531	11964	14.2220	
	8.4			406	76.8			57.2	3.81	7	57	2300	1216.7	14.4638	
40	120			22	207		4.01	0.45	10	1815	23983	6837	8.1269		
	8.4		mer to	559	94.1		omer to	102	11.4	11	32	429	695.3	8.2650	
	120	config	uration.	28	245	config	uration.	5.73	0.92	10	1271	8226	4786	5.6888	
	8.4		nts and L. will	711	111		nts and L. will	146	23.4	11	23	147	486.7	5.7855	
	225		nished	16	258		nished receipt	2.19	0.14	6	6366	258136	24028	14.7725	
	15.8	upon receipt of this information.		406	117	of	this .	55.6	3.56	7	114	4619	2443.6	15.0237	
40	225			22	331	inforn	nation.	3.83	0.43	10	3637	48165	13731	8.4414	
"	15.8			559	150			97.3	10.9	11	65	862	1396.4	8.5849	
	225			28	405			5.47	0.88	10	2546	16521	9611	5.9090	
	15.8			711	184			139	22.4	11	46	296	977.4	6.0095	

- GENERAL NOTES

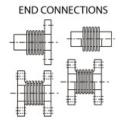
 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.

 Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.


- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS
Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.
FLMORES: ASTIM A105.
45 psig Series: 125 lb Lt. Wt. FFSO.
For 120 psig and 225 psig Series: Customer to specify actual flanges required.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pipe: ASTIM A285-C.
45 psig Series: 0.376-inch wall.
120 psig Series: 0.375-inch wall.
225 psig Series: 0.500-inch wall.
LINERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HINGES, GIMBALS: Carbon steel

42-INCH NOMINAL DIAMETER

Effective (Thrust) Area: 1492.74 in² (9628.17 cm²)

D I A M E T	P R E S S U	0/	/ERALL	LENG	TH ANI	D WEIG	ЭНТ	_	ONCUR		SPRING RATES				
		FLANGED ENDS		WELD ENDS		COMBINATION ENDS		AXIAL	L A T	A N G	A X	L A T	A N G	T O R S	
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L	
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶	
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵	
	50	12	700	16	160	14	430	3.98	0.26	10	724	28481	2993	9.1159	
	3.5	305	318	406	72.7	356	195	101	6.6	11	13	510	304.4	9.2709	
42	50	18	725	22	185	20	455	6.8	0.76	10	434	5872	1796	5.4457	
'-	3.5	457	330	559	84.1	508	207	173	193	11	8	105	182.7	5.5383	
	50	24	750	28	211	26	480	9.61	1.51	10	310	2098	1283	3.8826	
	3.5	610	341	711	95.9	660	218	244	38.4	11	6	38	130.5	3.9486	
	120			16	177			2.29	0.14	6	3338	148378	13812	16.4581	
	8.4			406	80.5			58.2	3.56	7	60	2655	1404.7	16.7379	
42	120			22	217			4.01	0.43	10	1908	27686	7892	9.4046	
'-	8.4		omer to	5.59	98.6		mer to y flange	102	10.9	11	34	495	802.6	9.5645	
	120	config	uration.	28	257	config	uration.	5.73	0.88	10	1335	9496	5525	6.5832	
	8.4		nts and L. will	711	117		nts and L. will	146	22.4	11	24	170	561.9	6.6952	
	225		nished	16	231		nished	2.18	0.13	6	6688	297936	27733	17.0894	
	15.8	upon receipt of this information.		406	105	upon receipt of this information.		55.4	3.3	6	120	5332	2820.4	17.3799	
42	225			22	308			3.08	0.41	10	3822	55592	15848	9.7654	
	15.8			559	140			97	10.4	11	68	995	1611.7	9.9314	
	225			28	385			5.46	0.84	10	2675	19068	11093	6.8358	
	15.8			711	175			139	21.3	11	48	341	1128.2	6.9520	

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

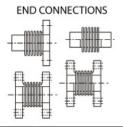
- To combine axial, lateral and angular movements, please refer to page 43.

 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.


MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request. Refer to page 33.
FLMORES: ASTIM A105.
50 psig Series: 125 lb Lt. Wt. FFSO.
50 psig Series: 125 lb Lt. Wt. FFSO.
For 120 psig and 225 psig Series: Customer to specify actual flanges required.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pipe: ASTM A285-C.
50 psig Series: 0.375-inch wall.
120 psig Series: 0.375-inch wall.
Liners: A240-T304.
Covers: Carbon steel.
Tie Roos, Hinges, Gimbals: Carbon steel

Effective (Thrust) Area: 1629 in² (10,508 cm²)

44-Inch Nominal Diameter

D I	P R	0/	/ERALL	LENG	TH AN	D WEIG	SHT		ONCUR			SPRIN	G RATES	
A M E T	E S S U		NGED NDS		LD		NATION IDS	AXIAL	L A T	ΑNG	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	O O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	50	12	737	16	164	14	450	3.51	0.19	9	854	47202	3862	11.8051
	3.5	305	335	406	74.5	356	205	89.2	4.83	10	15	845	392.8	12.0058
44	50	18	763	20	190	14	477	6.33	0.63	10	488	8325	2207	6.7104
' '	3.5	457	347	508	86.4	356	217	161	16	11	9	149	224.5	6.8245
	50	24	790	28	216	26	503	9.15	1.31	10	342	2793	1545	4.6874
	3.5	610	359	711	98.2	660	229	232	33.3	11	6	50	157.1	4.7671
	115	Custo	mer to	16	185	Custo	mer to	2.25	0.12	6	3500	193614	15840	19.1526
	8.1		y flange uration	406	84.1		/ flange uration.	57.2	3.05	6	63	3465	1610.9	19.4782
44	115	configuration. Weights and O.A.L. will	22	227	Weigh	nts and L. will	3.94	0.39	10	2000	34147	9051	10.8863	
	8.1		D.A.L. will	559	103		nished	100	9.91	11	36	611	920.5	11.0713
	115	of	this	28	255	of	receipt this	5.06	0.65	10	1555	15715	7040	8.4492
	8.1	inforn	nation.	711	116	inforn	nation.	129	16.5	11	28	1	716.0	8.5928

Phone: 713-731-0030

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- To increase cycle life or movements, please refer to graph on page 42.
- 4. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.
 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- 7. Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- 9. Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

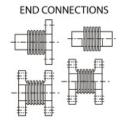
FLANGES: ASTM A105.

50 psig Series: 125 lb Lt. Wt. FFSO. 115 psig Series: Customer to specify actual flanges required.

Plate flanges and angle flanges available for low pressure systems. Please refer to

page 32.

PIPE: ASTM A53/A106. 50 psig Series: 0.375-inch wall. 115 psig Series: 0.375-inch wall.


Liners: A240-T304. Covers: Carbon steel.

46-INCH NOMINAL DIAMETER

Effective (Thrust) Area: 1794 in² (11,575 cm²)

D I	P R	0/	/ERALL	. LENG	TH AN	D WEIG	SHT		ONCUR			SPRIN	G RATES	
A M E T	E S S U		NGED NDS		LD IDS		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	COMP	E R A L	U L A R	A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	35	12	774	16	176	14	475	3.51	0.18	8	561	34157	2794	11.8403
	2.5	305	352	406	80	356	216	89.2	4.57	9	10	611	284.1	12.0416
46	35	18	805	22	207	20	506	6.33	0.6	10	321	6024	1597	6.7347
	2.5	457	366	559	94.1	508	230	161	15.2	11	6	108	162.4	6.8492
	35	22	826	26	228	24	527	8.21	1	10	249	2788	1242	5.2309
	2.5	559	375	660	104	610	240	209	25.4	11	4	50	126.3	5.3199
	95	Custo	omer to	16	202	Custo	mer to	2.84	0.15	7	2300	140096	11462	19.1806
	6.7		y flange uration.	406	91.8		y flange uration.	72.1	3.81	8	41	2507	1165.7	19.5067
46	95 6.7	Weigl	hts and L. will	22	251	Weigh	nts and L. will	5.1	0.48	10	1314	24708	6549	10.9093
"		be fur	rnished	559	114	be fur	nished	130	12.2	11	24	442	666.0	11.0848
	95	· of	receipt this	26	284	of	receipt this	6.55	0.8	10	1022	11436	5094	8.4734
	6.7	inforr	nation.	660	129	inforn	nation.	166	20.3	11	18	205	518.1	8.6174

GENERAL NOTES

- 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- To increase cycle life or movements, please refer to graph on page 42.
- 4. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- 5. Maximum test pressure: 1.5 X rated working pressure.
 6. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- 7. Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- 9. Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

FLANGES: ASTM A105.

35 psig Series: 125 lb Lt. Wt. FFSO. 95 psig Series: Customer to specify actual flanges required.

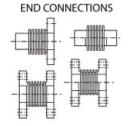
Plate flanges and angle flanges available for low pressure systems. Please refer to

page 32.

PIPE: ASTM A285-C

35 psig Series: 0.375-inch wall. 95 psig Series: 0.375-inch wall. LINERS: A240-T304.

Covers: Carbon steel.



Effective (Thrust) Area: 1947 in² (12,561 cm²)

48-Inch Nominal Diameter

D	P R	٥٧	/ERALL	. LENG	TH ANI) WEI	ЭНТ		ONCUR			SPRIN	G RATES	
A M E T	E S U		NGED IDS		LD		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	MM	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
	35	12	891	16	179	14	535	3.29	0.15	8	670	50793	3620	15.2078
	2.5	305	405	406	81.4	356	243	83.6	3.81	8	12	909	368.2	15.4663
48	35	18	923	22	212	20	567	6.11	0.53	10	361	7930	1949	8.1888
	2.5	457	420	559	96.4	508	258	155	13.5	11	6	142	198.2	8.3280
	35	22	945	26	233	24	589	7.99	0.91	10	276	3546	1491	6.2620
	2.5	559	430	650	106	610	268	203	23.1	11	5	63	151.6	6.3685
	95	Custo	mer to	16	203	Custo	mer to	2.55	0.12	6	2744	208321	14847	24.6308
	6.7		y flange uration.	406	92.3		/ flange uration.	64.8	3.05	7	49	3728	1509.9	25.0495
48	95	Weigh	nts and L. will	22	225	Weigh	nts and L. will	4.73	0.41	10	1478	32523	7994	13.2627
	6.7			559	116		nished	120	10.4	11	26	582	813.0	13.4882
	95	· of	this ·	26	289	. of	receipt this	6.19	0.7	10	1130	14544	6113	10.1421
	6.7	inforn	nation.	660	131	inforn	nation.	157	17.8	11	20	260	621.7	10.3145

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- To increase cycle life or movements, please refer to graph on page 42. 4. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.
 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- 7. Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- 9. Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

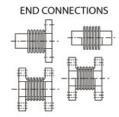
Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

FLANGES: ASTM A105.

35 psig Series: 125 lb Lt. Wt. FFSO. 95 psig Series: Customer to specify actual flanges required.

Plate flanges and angle flanges available for low pressure systems. Please refer to

page 32.


PIPE: ASTM A285-C.

35 psig Series: 0.375-inch wall. 95 psig Series: 0.375-inch wall.

LINERS: A240-T304. Covers: Carbon steel.

50- / 52- / 54-INCH NOMINAL DIAMETER

D I	P R	0\	/ERALL	LENG	TH ANI) WEIG	SHT		ONCUR			SPRIN	G RATES	
A M E T	E S S U		NGED IDS		LD		NATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵
50	75	13	953	16	197	15	575	2.1	0.11	5	2786	177720	1643	35.9278
	5.2	330	433	406	89.5	381	261	53.3	2.79	5	50	3180	1682.4	36.5386
Effe	ective	21	1002	24	246	23	624	5.4	0.55	10	1393	22215	8271	17.9639
A	rea	533	455	610	112	584	284	137	14	11	25	398	841.2	18.2693
213	38 in²	29	1050	32	294	31	672	8.1	1.24	10	929	6582	5514	11.9759
13,79	92 cm ²	737	477	813	134	787	305	206	31.5	11	17	118	560.8	12.1795
52	70	13	1005	16	205	15	605	2.72	0.13	6	2899	199415	18562	40.4050
52	4.9	330	457	406	93.2	381	276	69.1	3.3	6	52	3569	1887.8	41.0919
Effe	ective	21	1056	24	256	23	656	5.44	0.54	10	1450	24927	9281	20.2025
A	rea	533	480	610	116	584	298	138	13.7	11	26	446	943.9	20.5459
230)5 in²	29	1106	32	306	31	706	8.16	1.2	10	966	7386	6187	13.4683
14,8	70 cm ²	737	503	813	139	787	321	207	30.5	11	17	132	629.2	13.6973
54	70	13	1057	16	213	15	635	2.72	0.13	6	3013	222807	20740	45.2394
D4	4.9	330	480	406	96.8	381	289	69.1	3.3	6	54	3987	2109.3	46.0085
Effe	ective	21	1110	24	266	23	688	5.44	0.52	10	1506	27851	10370	22.6197
A	rea	533	505	610	121	584	313	138	13.2	11	27	498	1054.6	23.0043
247	78 in²	29	1162	32	318	31	740	8.15	1.16	10	1004	8252	6913	15.0798
15,98	89 cm ²	737	528	813	145	787	336	207	29.5	11	18	148	703.1	15.3362

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.

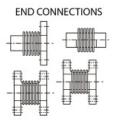
 To increase cycle life or movements, please refer to graph on page 42.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Maximum test pressure: 1.5 X rated working pressure.

 Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS


MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request. Refer to page 33.
FLANGES: ASTM A105.
70-75 psig Series: 125 lb Lt. Wt. FFSO.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
PIPE: ASTM A285-C.
70-75 psig Series: 0.375-inch wall.
LINERS: A240-T304.
COVERS: Carbon steel.

60- / 66- / 72-INCH NOMINAL DIAMETER

D I	P R	0/	/ERALL	. LENG	TH ANI	D WEIG	ЭНТ		ONCUR			SPRIN	G RATES	
A M E T	E S S U		NGED NDS		LD IDS		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	A L	E R A L	U L A R	1 0 N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵
60	60	13	1343	16	236	15	789	2.65	0.11	5	3353	345665	28280	63.0276
00	4.2	330	610	406	107	381	359	67.3	2.79	5	60	6186	2876.1	64.0991
Effe	ective	21	1401	24	294	23	848	5.31	0.44	10	1677	40465	14140	31.2608
A	rea	533	637	610	134	584	385	135	11.2	11	30	724	1438.0	31.7923
303	36 in²	29	1459	32	353	31	906	8.14	1.03	10	1118	11736	9427	20.7850
19,5	87 cm ²	737	663	813	160	787	412	207	26.2	11	20	210	958.7	21.1383
66	55	13	1569	16	260	15	914	2.67	0.1	5	3694	457820	37455	83.8532
	3.8	330	713	406	118	381	415	67.8	2.54	5	66	8193	3809.2	85.2787
Effe	ective	21	1633	24	324	23	978	5.45	0.41	9	1847	53595	18728	41.5901
A	rea	533	742	610	147	584	445	1.38	10.4	10	33	959	1904.6	42.2971
365	50 in²	29	1697	32	388	31	1043	8.17	0.94	10	1231	15544	12485	27.6527
23,5	50 cm ²	737	771	813	176	787	474	208	23.9	11	22	278	1269.7	28.1228
72	50	13	1775	16	283	15	1029	2.7	0.09	4	4035	591934	48428	108.8247
12	3.5	330	807	406	129	381	468	68.6	2.29	5	72	10593	4925.1	110.6748
Effe	ective	21	1845	24	53	23	1099	5.51	0.38	9	2017	69295	24214	53.9756
A	rea	533	839	610	160	584	500	140	9.65	9	36	1240	2462.6	54.8932
432	21 in²	29	1915	32	423	31	1169	8.26	0.87	10	1345	20097	16143	35.8877
27,8	77 cm ²	737	870	813	192	787	531	210	22.1	11	24	360	1641.7	36.4978

- GENERAL NOTES
 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

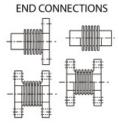
- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement. To combine axial, lateral and angular movements, please refer to page 43. To increase cycle life or movements, please refer to graph on page 42. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression. Maximum test pressure: 1.5 X rated working pressure. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings. Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- hinged, or gimbal expansion joints.

 Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request. Refer to page 33.
FLANGES: ASTM A105.
50-60 psig Series: 125 lb Lt. Wt. FFSO.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pipe: ASTM A285-C.
50-60 psig Series: 0.375-inch wall


50-60 psig Series: 0.375-inch wall. LINERS: A240-T304.

Covers: Carbon steel.

84- / 96-Inch Nominal Diameter

D I	P R	0/	/ERALL	LENG	TH ANI	D WEIG	ЭНТ		ONCUR			SPRING	G RATES	
A M E T	E S S U		NGED NDS		LD DS		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	MM	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10⁵
84	45	14	2089	16	332	15	1210	2.82	0.09	4	4716	820804	76404	169.9604
	3.1	356	950	406	151	381	550	71.6	2.29	4	84	14689	7770.3	172.8497
Effe	ective	22	2171	24	414	23	1292	5.65	0.35	8	2358	102601	38202	84.9802
A	rea	559	987	610	188	584	587	144	8.89	8	42	1836	3885.1	86.4249
16,7	'81 in²	30	2252	32	495	31	1374	8.47	0.79	10	1572	30400	25468	56.6535
108,2	264 cm ²	762	1024	813	225	787	625	215	20.1	11	28	544	2590.1	57.6166
96	40	14	3400	16	378	15	1889	2.73	0.07	3	5398	1387244	113494	257.6974
90	2.8	356	1546	406	172	381	859	69.3	1.78	4	97	24825	11542.3	262.0783
Effe	ective	22	3494	24	471	23	1982	5.56	0.29	7	2699	162399	56747	127.8144
A	rea	559	1588	610	214	584	901	141	7.37	7	48	2906	5771.2	129.9873
19,7	'43 in²	30	3587	32	565	31	2076	8.35	0.67	10	1799	47100	37831	84.9823
125,6	32 cm ²	762	1630	814	257	787	944	212	17	11	32	843	3847.4	86.4270

GENERAL NOTES

- 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- To increase cycle life or movements, please refer to graph on page 42.
- 4. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- 5. Maximum test pressure: 1.5 X rated working pressure.
 6. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- 7. Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- 9. Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS

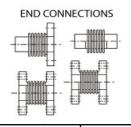
Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

FLANGES: ASTM A105.

40-45 psig Series: 125 lb Lt. Wt. FFSO. Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.

PIPE: ASTM A285-C

40-45 psig Series: 0.375-inch wall.


LINERS: A240-T304. Covers: Carbon steel.

108- / 120- / 132-INCH NOMINAL DIAMETER

D	P R	0/	/ERALL	. LENG	TH ANI	D WEIG	ЭНТ		ONCUR OVEMEN			SPRIN	G RATES	
A M E T	E S S U		NGED NDS		LD		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/ DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	ММ	GRAD	KG/MM	KG/MM	N-M/ GRAD	N-M/GRAD x 10⁵
108	35			16	427			2.87	0.07	3	6079	1729417	160982	360.9530
100	2.4			406	194			72.9	1.78	3	109	30949	16371.9	367.0892
Effe	ective			24	532			5.74	0.28	6	3040	216177	80491	180.4765
A	rea			610	242			146	7.11	7	54	3869	8185.9	183.5446
953	33 in²	Cue	tomer	32	637	Cue	tomer	8.6	0.62	9	2026	64052	53661	120.3177
61,50	05 cm ²		pecify	813	290		pecify	218	15.7	10	36	1146	5457.3	122.3631
120	30		nge	16	475		nge	2.9	0.06	3	6761	2365085	220152	495.0025
120	2.1	config	juration	406	216	config	uration.	73.7	1.52	3	121	42324	22389.6	503.4175
Effe	ective	_	nts and	24	591		nts and	5.79	0.25	5	3380	295636	110076	247.5012
A	rea	_	L. will nished	610	269		L. will nished	147	6.35	6	60	5291	11194.7	251.7088
11,7	'23 in²		receipt	32	708		receipt	8.69	0.57	8	2254	87596	73384	165.0008
75,63	32 cm ²		this .	813	322	1 '	this	221	14.5	9	40	1568	7463.2	167.8058
132	25	inforn	nation.	16	522	inforn	nation.	2.91	0.06	3	7442	3140065	292291	658.7047
132	1.7			406	237			73.9	1.52	3	133	56193	29726.0	669.9027
Effe	ective			24	651			5.82	0.23	5	3721	392508	146145	329.3523
A	rea			610	296			148	5.85	6	67	7024	14862.9	334.9513
	39 in ²			32	779			8.73	0.52	7	2481	116299	97430	219.5682
91,2	19 cm ²			813	354			222	13.2	8	44	2081	9908.6	223.3009

- GENERAL NOTES

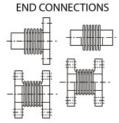
 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement. To combine axial, lateral and angular movements, please refer to page 43. To increase cycle life or movements, please refer to graph on page 42. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression. Maximum test pressure: 1.5 X rated working pressure. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings. Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.

 Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- Overlanding and Wood to administration of the Market of th

MATERIALS

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request. Refer to page 33.
FLANGES: ASTM A105.
Customer to specify actual flanges required.
PIPE: ASTM A285-C.


25-35 psig Series: 0.375-inch wall. Liners: A240-T304.

Covers: Carbon steel.
TIE Rods, HINGES, GIMBALS: Carbon steel

144- / 156-Inch Nominal Diameter

D I	P R	OV	/ERALL	LENG	TH ANI	D WEIG	ЭНТ		ONCUR			SPRIN	G RATES	
A M E T	E S S U		NGED IDS		LD DS		INATION IDS	AXIAL	L A T	A N G	A X	L A T	A N G	T O R S
E R	R E	O.A.L	WT.	O.A.L	WT.	O.A.L	WT.	C O M P	E R A L	U L A R	I A L	E R A L	U L A R	I O N A L
	PSIG	IN	LB	IN	LB	IN	LB	IN	IN	DEG	LB/IN	LB/IN	IN-LB/DEG	IN-LB/DEG x 10 ⁶
	KG/CM ²	ММ	KG	ММ	KG	ММ	KG	ММ	MM	GRAD	KG/MM	KG/MM	N-M/GRAD	N-M/GRAD x 10 ⁵
144	25			16	570			2.91	0.05	2	8124	4068158	378682	855.0225
' ' '	1.7			406	259			73.9	1.27	3	145	72802	38512.0	869.5578
Effe	ective		tomer becify	24	710		tomer becify	5.82	0.21	5	4062	509520	189341	427.5112
A	rea		nge	610	323	'	nge	148	5.33	5	73	9100	19256.0	434.7789
16,7	81 in ²		uration.	32	850		uration.	8.73	0.48	7	2708	150673	126227	285.0075
108,2	64 cm ²	Weigh	nts and	813	386	Weigh	nts and	222	12.2	8	48	2696	12837.3	289.8526
156	25	O.A.	L. will	16	638	O.A.	L. will	3.69	0.06	3	5401	3182115	296205	957.6637
150	1.7		nished	406	290		nished	93.7	1.52	3	97	56946	30124.0	973.9440
Effe	ective	'	receipt this	24	810	l '	receipt this	7.38	0.25	5	2701	397764	148102	478.8319
A	rea	inforn	nation.	610	368	inforn	nation.	187	6.35	6	48	7118	15062.0	486.9720
19,7	43 in ²			30	939			10.1	0.47	7	1964	153009	107711	348.2414
125,6	32 cm ²			762	427			258	11.9	8	35	2738	10954.2	354.1615

GENERAL NOTES

- 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 43.
- To increase cycle life or movements, please refer to graph on page 42.
- 4. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- 5. Maximum test pressure: 1.5 X rated working pressure.
 6. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- 7. Torsional spring rate data provided only for modeling expansion joints on computer stress programs. Please consult factory for allowable torsional loadings.
- Overall lengths and weights for unrestrained expansion joints only. Consult factory for information regarding tied, hinged, or gimbal expansion joints.
- 9. Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

MATERIALS

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

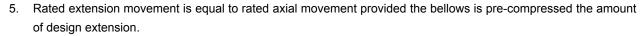
FLANGES: ASTM A105.

Customer to specify actual flanges required.

PIPE: ASTM A285-C.

25 psig Series: 0.375-inch wall.

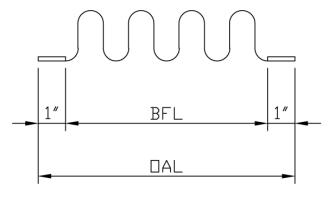
Liners: A240-T304. Covers: Carbon steel.


SINGLE AND MULTI-PLY STAINLESS STEEL

85 PSIG

321 S.S. Bellows with Welding Aide Monel® and Inconel® available on request.

Notes:


- Pressure Range: Vacuum to 50 PSIG for 3/4" to 1 1/2",
 85 PSIG for 2" and over.
- 2. Temperature Range: -20 °F to 800 °F.
- 3. Rated cycle life is 3,000 cycles per EJMA for any one tabulated movement.
- 4. Maximum axial extension movement is 50% of the tabulated axial movement.

6. Maximum test pressure: 1.5 x design pressure7. Materials: Bellows - ASTM A240-T321SS

Welding Aides - ASTM A240-T321SS

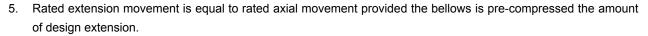
8. Flanges or welds ends can be attached to the bellows 1/16" thk (min.) Welding Aide.

ND (in.)	PART NUMBER	MAX. AXIAL MOVEMENT (in.)	MAX. LATERAL MOVEMENT (in.)	MAX. ANGULAR MOVEMENT (deg.)	B.F.I. (in.)	NUMBER OF CORRUGATIONS	0.A.L. (in.)	WEIGHT EACH (lb.)	AXIAL SPRING RATE (lb./ in.)	LATERAL SPRING RATE (lb./ in.)	ANGULAR SPRING RATE (in./lb./deg.)
3/4	S007050C	0.59	0.47	10	2.75	13	3.50	0.08	392	95	3
	L007050C	0.79	0.71	10	3.56	17	4.31	0.09	302	39	3
1	S010050C	0.59	0.27	10	2.19	9	2.94	0.10	386	274	3
	L010050C	0.87	0.59	10	3.00	13	3.75	0.12	269	90	3
1 1/2	S015050C	0.59	0.24	10	2.38	10	3.13	0.15	515	622	3
	L015050C	0.94	0.59	10	3.63	16	4.38	0.19	325	151	3
2	US-2-8-85S	0.64	0.24	10	3.00	8	5.00	0.60	643	2068	27
	US-2-12-85L	0.95	0.53	10	4.50	12	6.50	1.00	693	462	14
2 1/2	US-2.5-8-85S	1.33	0.39	10	3.00	8	5.00	1.00	580	1052	21
	US-2.5-12-85L	1.12	0.50	10	4.50	12	6.50	1.00	386	312	14
3	US-3-8-85S	0.71	0.17	10	3.00	8	5.00	1.00	855	2887	38
	US-3-12-85L	1.07	0.40	10	4.50	12	6.50	1.00	570	855	25
4	US-4-8-85S	0.96	0.18	10	3.00	8	5.00	1.00	547	3016	39
	US-4-12-85L	1.45	0.42	10	4.50	12	6.50	2.00	365	894	26
5	US-5-8-85S	0.95	0.15	10	3.00	8	5.00	1.00	684	5295	69
	US-5-12-85L	1.42	0.34	10	4.50	12	6.50	2.00	456	1569	46
6	US-6-8-85S	1.10	0.19	10	4.00	8	6.00	3.00	926	5729	133
	US-6-12-85L	1.65	0.44	10	6.00	12	8.00	4.00	617	1698	89
8	US-8-8-85S	1.07	0.15	10	4.00	8	6.00	3.00	1220	2930	273
	US-8-12-85L	1.61	0.34	10	6.00	12	8.00	5.00	813	868	182
10	US-10-8-85S	1.99	0.45	10	8.00	8	10.00	7.00	1664	6095	567
	US-10-12-85L	2.38	0.82	10	12.00	12	14.00	12.00	1110	1806	378
12	US-12-8-85S	2.09	0.40	10	8.00	8	10.00	11.00	1077	5585	520
	US-12-12-85L	3.14	0.91	10	12.00	12	14.00	15.00	718	1655	347
14	US-14-8-85S	2.05	0.36	10	8.00	8	10.00	12.00	1187	7231	673
	US-14-12-85L	3.08	0.81	10	12.00	12	14.00	17.00	791	2143	449
16	US-16-8-85S	2.04	0.31	10	8.00	8	10.00	21.00	2000	16042	1493
	US-16-12-85L	3.06	0.71	10	12.00	12	14.00	28.00	1333	4753	996
18	US-18-8-85S	2.03	0.28	10	8.00	8	10.00	23.00	2259	22250	2071
	US-18-12-85L	3.05	0.63	10	12.00	12	14.00	32.00	1506	6593	1381
20	US-20-8-85S	2.01	0.25	10	8.00	8	10.00	26.00	2518	29879	2781
	US-20-12-85L	3.02	0.57	10	12.00	12	14.00	36.00	1679	8853	1854
22	US-22-8-85S	2.28	0.26	10	8.00	8	10.00	26.00	2059	26363	3775
	US-22-12-85L	3.42	0.58	10	12.00	12	14.00	36.00	1372	7811	2517
24	US-24-8-85S	2.26	0.23	10	8.00	8	10.00	32.00	2251	37757	3515
	US-24-12-85L	3.39	0.53	10	12.00	12	14.00	47.00	1501	11187	2343

SINGLE AND MULTI-PLY STAINLESS STEEL

150 PSIG

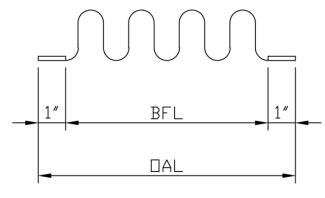
321 S.S. Bellows with Welding Aide Monel® and Inconel® available on request.


Notes:

1. Pressure Range: Vacuum to 150 PSIG.

2. Temperature Range: -20 °F to 800 °F.

3. Rated cycle life is 3,000 cycles per EJMA for any one tabulated movement.


4. Maximum axial extension movement is 50% of the tabulated axial movement.

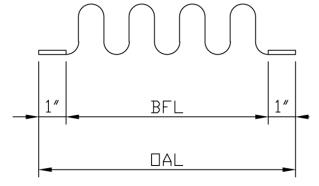
6. Maximum test pressure: 1.5 x design pressure7. Materials: Bellows - ASTM A240-T321SS

Welding Aides - ASTM A240-T321SS

8. Flanges or welds ends can be attached to the bellows 1/16" thk (min.) Welding Aide.

ND (in.)	PART NUMBER	MAX. AXIAL MOVEMENT (in.)	MAX. LATERAL MOVEMENT (in.)	MAX. ANGULAR MOVEMENT (deg.)	B.F.I. (in.)	NUMBER OF CORRUGATIONS	0.A.L. (in.)	WEIGHT EACH (lb.)	AXIAL SPRING RATE (lb./ in.)	LATERAL SPRING RATE (lb./ in.)	ANGULAR SPRING RATE (in./lb./deg.)
3/4	S007150C	0.33	0.14	10	1.63	7	2.38	0.06	734	633	13
	L007150C	0.47	0.25	10	2.19	10	2.94	0.07	510	218	13
1	S010150C	0.39	0.12	10	1.56	6	2.31	0.08	582	930	13
	L010150C	0.53	0.19	10	1.94	8	2.69	0.09	437	392	13
1 1/2	S015150C	0.41	0.10	10	1.75	7	2.50	0.13	739	1815	13
	L015150C	0.59	0.19	10	2.38	10	3.13	0.15	515	622	13
2	US-2-8-150S	0.34	0.12	10	3.00	8	5.00	0.60	2911	3153	41
	US-2-12-150L	0.51	0.28	10	4.50	12	6.50	1.00	1940	934	28
2 1/2	US-2.5-8-150S	0.69	0.20	10	3.00	8	5.00	1.00	1441	2615	53
	US-2.5-12-150L	0.78	0.34	10	4.50	12	6.50	1.00	961	775	35
3	US-3-8-150S	0.66	0.16	10	3.00	8	5.00	1.00	950	2281	30
	US-3-12-150L	0.82	0.31	10	4.50	12	6.50	1.00	974	1007	30
4	US-4-8-150S	0.70	0.13	10	3.00	8	5.00	1.00	1224	4822	63
	US-4-12-150L	1.05	0.30	10	4.50	12	6.50	2.00	816	1429	42
5	US-5-8-150S	0.69	0.11	10	3.00	8	5.00	2.00	1531	8791	115
	US-5-12-150L	1.03	0.25	10	4.50	12	6.50	3.00	1021	2605	77
6	US-6-8-150S	0.83	0.15	10	4.00	8	6.00	3.00	1823	8364	195
	US-6-12-150L	1.25	0.34	10	6.00	12	8.00	4.00	1215	2478	130
8	US-8-8-150S	0.81	0.11	10	4.00	8	6.00	5.00	2401	17807	414
	US-8-12-150L	1.22	0.26	10	6.00	12	8.00	7.00	1601	5276	276
10	US-10-8-150S	1.48	0.33	10	8.00	8	10.00	11.00	2985	8692	809
	US-10-12-150L	2.22	0.75	10	12.00	12	14.00	17.00	1990	2575	539
12	US-12-8-150S	1.54	0.29	10	8.00	8	10.00	20.00	3532	14601	1359
	US-12-12-150L	2.31	0.66	10	12.00	12	14.00	29.00	2354	4326	906
14	US-14-8-150S	1.53	0.26	10	8.00	8	10.00	23.00	3894	19100	1778
	US-14-12-150L	2.30	0.60	10	12.00	12	14.00	31.00	2596	5659	1185
16	US-16-8-150S	1.52	0.23	10	8.00	8	10.00	25.00	4473	28074	2613
	US-16-12-150L	2.28	0.52	10	12.00	12	14.00	36.00	2982	8318	1742
18	US-18-8-150S	1.50	0.20	9	8.00	8	10.00	29.00	5052	39491	3676
	US-18-12-150L	2.26	0.47	10	12.00	12	14.00	40.00	3368	11701	2451
20	US-20-8-150S	1.49	0.18	8	8.00	8	10.00	32.00	5632	53644	4993
-	US-20-12-150L	2.24	0.42	10	12.00	12	14.00	45.00	3755	15895	3329
22	US-22-8-150S	1.49	0.17	8	8.00	8	10.00	32.00	4132	52913	7578
	US-22-12-150L	2.23	0.38	10	12.00	12	14.00	45.00	2755	15678	5052
24	US-24-8-150S	1.47	0.11	5	8.00	8	10.00	39.00	6792	91337	8502
	US-24-12-150L	2.21	0.26	8	12.00	12	14.00	54.00	4528	27063	5668

ows, Inc.


SINGLE AND MULTI-PLY STAINLESS STEEL

300 PSIG

321 S.S. Bellows with Welding Aide Monel® and Inconel® available on request.

Notes:

- 1. Pressure Range: Vacuum to 300 PSIG.
- 2. Temperature Range: -20 °F to 800 °F.
- 3. Rated cycle life is 3,000 cycles per EJMA for any one tabulated movement.
- 4. Maximum axial extension movement is 50% of the tabulated axial movement.

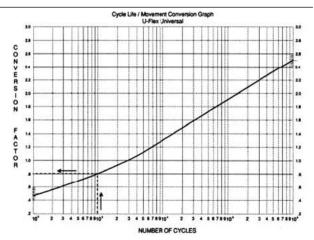
- 5. Rated extension movement is equal to rated axial movement provided the bellows is pre-compressed the amount of design extension.
- 6. Maximum test pressure: 1.5 x design pressure
- 7. Materials: Bellows ASTM A240-T321SS

Welding Aides - ASTM A240-T321SS

8. Flanges or welds ends can be attached to the bellows 1/16" thk (min.) Welding Aide.

ND (in.)	PART NUMBER	MAX. AXIAL MOVEMENT (in.)	MAX. LATERAL MOVEMENT (in.)	MAX. ANGULAR MOVEMENT (deg.)	B.F.I. (in.)	NUMBER OF CORRUGATIONS	0.A.L. (in.)	WEIGHT EACH (lb.)	AXIAL SPRING RATE (lb./ in.)	LATERAL SPRING RATE (lb./ in.)	ANGULAR SPRING RATE (in./lb./deg.)
3/4	S007300C	0.23	0.10	10	1.63	7	2.38	0.07	1607	1394	13
	L007300C	0.35	0.25	10	2.38	11	3.13	0.09	1025	358	13
1	S010300C	0.29	0.12	10	1.94	8	2.69	0.13	1387	1647	13
	L010300C	0.43	0.27	10	2.75	12	3.50	0.17	1226	487	13
1 1/2	S015300C	0.35	0.13	10	2.38	10	3.13	0.22	2279	2733	13
	L015300C	0.51	0.29	10	4.06	15	4.81	0.29	1518	806	13
2	US-2-8-300S	0.32	0.12	10	3.00	8	5.00	0.60	2511	3022	40
	US-2-12-300L	0.48	0.27	10	4.50	12	6.50	1.00	693	462	14
2 1/2	US-2.5-8-300S	0.77	0.30	10	4.00	8	6.00	2.00	1441	1471	53
	US-2.5-12-300L	0.89	0.52	10	6.00	12	8.00	3.00	961	436	35
3	US-3-8-300S	0.57	0.19	10	4.00	8	6.00	2.00	4230	6345	148
	US-3-12-300L	0.85	0.42	10	6.00	12	8.00	3.00	2820	1880	98
4	US-4-8-300S	0.77	0.20	10	4.00	8	6.00	4.00	2573	6336	147
	US-4-12-300L	1.16	0.45	10	6.00	12	8.00	4.50	1715	1877	98
5	US-5-8-300S	0.74	0.16	10	4.00	8	6.00	4.00	3217	11536	268
	US-5-12-300L	1.11	0.36	10	6.00	12	8.00	4.50	2144	3418	179
6	US-6-8-300S	0.84	0.15	10	4.00	8	6.00	6.30	2809	14080	328
	US-6-12-300L	1.26	0.34	10	6.00	12	8.00	7.50	1872	4172	218
8	US-8-8-300S	0.82	0.11	10	4.00	8	6.00	7.50	3697	30059	700
	US-8-12-300L	1.23	0.26	10	6.00	12	8.00	10.00	2465	8906	466
10	US-10-8-300S	1.52	0.38	10	9.00	8	11.00	23.00	6274	20302	1890
	US-10-12-300L	2.28	0.87	10	13.50	12	15.50	34.00	4183	6015	1260
12	US-12-8-300S	1.57	0.33	10	9.00	8	11.00	40.00	7424	26948	3175
	US-12-12-300L	2.36	0.76	10	13.50	12	15.50	56.00	4950	7985	2116
14	US-14-8-300S	1.55	0.30	10	9.00	8	11.00	45.00	8185	35251	4153
	US-14-12-300L	2.32	0.68	10	13.50	12	15.50	62.00	5457	10445	2769
16	US-16-8-300S	1.53	0.26	10	9.00	8	11.00	51.00	9403	51812	6104
	US-16-12-300L	2.30	0.60	10	13.50	12	15.50	71.00	6268	15352	4069
18	US-18-8-300S	1.53	0.23	9	9.00	8	11.00	55.00	10621	72883	8586
	US-18-12-300L	2.29	0.53	10	13.50	12	15.50	80.00	7081	21595	5724
20	US-20-8-300S	1.51	0.21	8	9.00	8	11.00	60.00	11839	99004	11664
	US-20-12-300L	2.27	0.48	10	13.50	12	15.50	89.00	7893	29335	7776
22	US-22-8-300S	1.40	0.16	6	8.00	8	10.00	60.00	9507	121742	17434
	US-22-12-300L	2.11	0.36	10	12.00	12	14.00	89.00	6338	36072	11623
24	US-24-8-300S	1.60	0.15	6.85	8.00	8	10.00	80.00	10396	156893	14604
	US-24-12-300L	2.41	0.35	10	12.00	12	14.00	112.00	6931	46487	9736

EXPANSIONJOINTS.XLS-09/07/09


CYCLE LIFE AND RATED MOVEMENT

Universal Expansion Joints

U.S. Bellows' universal expansion joints are designed for 3000 cycles for any one tabulated movement shown. Cycle life may be increased, or movement may be increased (decreasing the cycle life) by utilizing the graph shown on this page. The graph may also be used for superimposing more than one movement condition on the bellows at one time. It is important to remember that the movements shown in the bellows data pages do not allow for any installation misalignment. A proper specification for a bellows expansion joint should reflect what the actual system movements will be. To insure the highest quality bellows for the least cost, all movement conditions must be taken into account. Refer to the HOW TO ORDER section on page 80 for an example on the proper analysis and selection of a universal expansion joint.

Examples of movement conditions that typically occur in a piping system are:

- Installation: Allow one cycle installation misalignment.
- Start-Up/Shut-Down: Movements produced between the minimum ambient temperature and the maximum start-up temperature. This is normally a very low number of cycles.
- Operating: Movements produced due to temperature fluctuations during system operation. This is typically a very small movement for a very large number of cycles.
- Excursion: Movement resulting from a worst case/ upset scenario, occurring during system operation.
 This is normally a very low number of cycles.

How To Use the Graph

- Enter the graph horizontally at the number of anticipated cycles or the movement condition being considered.
- ♦ Move vertically until the graph is intercepted.
- Move horizontally and read conversion factor.
 Example: Enter graph at 1,000 cycles; read C. F. of 0.80

44" Double Gimbal Universal Expansion Joint

Note: Maximum increase in movements for combined movement conditions shall not exceed 110% of catalog rated movements.

View catalog section for cycle life: www.usbellows.com/cycle

HOW TO SELECT AND ORDER

The first step in selecting the proper expansion joint assembly is to collect and organize as much information regarding the design and operating parameters of the system as possible. As a minimum the following information should be provided:

- ♦ Size of the line.
- ♦ Design pressure.
- Design temperature.
- ♦ Design movements and required cycle life.
- ♦ Overall length requirement, if any.
- ♦ Type of end connections.
- ♦ Bellows material.
- ♦ Pipe material.
- ♦ Flange specification and material.
- ♦ Type of expansion joint.
- ♦ Accessories.

EXAMPLE

- Assume the following expansion joint design criteria:
- a) Line size: 18-inch nominal diameter.
- b) Design/operating pressure: 300 psig.
- c) Design/operating temperature: 550°F.
- d) Movements/cycle life
 Installation: 0.25-inch lateral; 0° angulation,
 0-inch axial. Start-up/Shut-Down: 1.13-inch lateral;
 0°angulation, 0-inch axial, 1,000 cycles.
 Excursion: 2.05-inches lateral, 0°angulation;
 0-inch axial, 200 cycles.

The thermal growth of the pipe between the tie rods must be considered when designing the bellows of an expansion joint with 60-inches O.A.L. The thermal expansion of carbon steel pipe at 550°F is 0.21-inch. The corresponding expansion for the excursion conditions is 0.38-inch.

Phone: 713-731-0030

- e) End connections: Weld ends (standard bevel); 18-inches standard weight pipe (0.375-inch wall).
- f) Bellows material: A-240-T321.
- g) Type: Tied.
- h) Accessories: Liner.
- 2. Turn to the Conversion Factor Graph and calculate equivalent catalog movements.

Condi-	No.	Axial	Lat.	Ang.	C.F.	E	quivale	nt
tion	Cycles					Axial	Lat.	Ang
Install	1	0	.25	0	.49	0	.12	0
Start-Up/ Shut- Down	1000	.21	1.13	0	.80	.17	.90	0
Excur- sion	200	.38	2.05	0	.55	.21	1.13	0
			Tota	al =	(0.38	2.15	0

- 3. Refer to page 85, 18-inch nominal diameter universal expansion joints, and go to the lowest pressure rating that is equal to or greater than specified design pressure (300 psig). Compare the total equivalent catalog movements to those shown in the catalog, keeping in mind that the tabulated movements in the catalog are for 3000 cycles for one movement only.
- 4. Select the shortest overall length that by inspection would appear to meet the movement criteria. Use the following formula to determine if the selected overall length is acceptable.

400 psig rating/60-inch O.A.L.

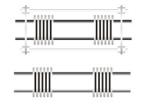
$$\frac{0.38}{1.98} + \frac{2.15}{3.16} + \frac{0.00}{0.00} = 0.87$$

- 5. Since 0.87 is less than 1.0, the 400 psig/60-inch O.A.L. will meet the criteria for all the movement conditions specified in Step 1.
- Include the designations for the type (TU for tied universal), and liner (L), in the part number.
 All of the actual movements must be specified when combination ends are specified.
- 7. On combination end units, the direction of flow must be specified.
- 8. The resulting U.S. Bellows part number would then be as follows:

10" Tied Universal Expansion Joint

PART	Size	Pressure	LENGTH	END CONNECTIONS	Түре	Accessories	Material
Number							
Example	18	400	60	WE WE	TU	L	321

Round Metallic Universal Expansion Joint with Limit Rods


8" Universal Expansion Joints for an Air Force Base in Mexico

14" Tied Universal Expansion Joint for a Nitrogen Plant

3- / 3-1/2- / 4-Inch NOMINAL DIAMETER

UNIVERSAL EXPANSION JOINTS

	Р		NC	N-CONCURR	ENT MOVE	MENTS/SPRI	NG RATE	S	
	R E		LATERA	L MOVEMEN	T/SPRING F	RATES		AXI	AL
s	S S	24 I	N O.A.L	36 1	N O.A.L	48 I	N O.A.L	M O	
l Z	U R	610 M	IM O.A.L	914 N	IM O.A.L	1219 M	M O.A.L	V E M	S P R
E	E	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	E N T	R A I T N E G
	PSIG	IN	LB/IN	IN	LB/IN	IN	LB/IN	IN	LB/IN
	KG/ CM ²	MM	KG/MM	MM	KG/MM	MM	KG/MM	ММ	KG/MM
	75	3.17	16	8.93	3	14.93	1	2.05	152
3	5.3	81	0.3	227	0.05	379	0.02	52	3
3	500	1.33	91	3.39	18	5.49	7	0.71	1010
	35.1	34	1.6	86	0.32	139	0.13	18	18
	75	2.81	23	7.82	4	13.03	2	2	175
3.5	5.3	71	0.4	199	0.07	331	0.04	51	3
3.5	500	1.10	151	2.77	30	4.48	12	0.65	1355
	35.1	28	2.7	70	0.54	114	0.21	17	24
	50	3.43	19	9.41	3	15.61	1	2.71	111
4	3.5	87	0.3	239	0.05	396	0.02	69	2
4	275	1.44	106	3.53	22	5.66	9	0.92	775
	19.3	37	1.9	90	0.39	144	0.16	23	14

GENERAL NOTES

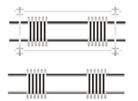
- 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 80.
- To increase cycle life or movements, please refer to graph on page 79.
- 4. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- 5. Tabulated values are for tied joints, with butt weld ends. Performance of joints with flanged ends, and unrestrained joints, will exceed tabulated values. Maximum test pressure: 1.5 X rated working pressure.
- Bellows are rated for 650°F: See page 31 for appropriate flange temperature/pressure
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.
- 9. Please refer to page 81 for part number example.

Phone: 713-731-0030

MATERIALS

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33. FLANGES: ASTM A105.

50-75 psig Series: 150 lb ANSI B16.5 RPSO. 275-500 psig Series: 300 lb ANSI B16.5


Plate flanges and angle flanges available for low pressure systems. Please refer to page 32. PIPE: ASTM A-53/A-106.

50-75 psig Series: Std. Wt. pipe. 275-500 psig Series: Std. Wt. pipe. Liners: A240-T304.

Covers: Carbon steel.
Tie Rods, Hinges, Gimbals: Carbon steel

UNIVERSAL EXPANSION JOINTS

5- / 6- / 8-Inch NOMINAL DIAMETER

	Р		NC	N-CONCURR	ENT MOVE	MENTS/SPRII	NG RATES	S	
	R E		LATERA	L MOVEMEN	T/SPRING R	RATES		AXIA	AL.
s	S S	30 I	N O.A.L	42	N O.A.L	54 II	N O.A.L	M O	
l Z	U R	762 M	IM O.A.L	1067 N	IM O.A.L	1372 M	M O.A.L	V E M	S P R R A
E	E	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	E N T	I T N E G
	PSIG	IN	LB/IN	IN	LB/IN	IN	LB/IN	IN	LB/IN
	KG/ CM ²	ММ	KG/MM	MM	KG/MM	ММ	KG/MM	ММ	KG/MM
	75	4.96	12	9.61	4	14.33	2	2.47	139
5	5.3	126	0.2	244	0.07	364	0.04	63	2
	275	1.78	87	3.26	29	4.75	14	0.77	1160
	19.3	45	1.6	83	0.52	121	0.25	20	21
	70	3.59	22	7.44	6	11.34	3	2.43	143
	4.9	91	0.4	189	0.11	288	0.05	62	3
6	200	2.01	104	4.17	29	6.36	13	1.36	665
"	14.1	51	1.9	106	0.52	162	0.23	35	12
	500	0.65	1017	1.38	259	2.12	115	0.46	5473
	35.1	17	18.2	35	4.63	54	2.06	12	98
	45	3.62	40	8.31	10	13.19	4	3.91	126
	3.2	92	0.7	211	0.18	335	0.07	99	2
8	200	1.89	186	4.34	46	6.89	20	2.05	583
°	14.1	48	3.3	110	0.82	175	0.36	52	10
	400	0.71	1576	1.66	364	2.64	157	0.77	4314
	28.1	18	28.2	42	6.51	67	2.81	20	77

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

 2. To combine axial, lateral and angular movements, please refer to page 80.

 3. To increase cycle life or movements, please refer to graph on page 79.

 4. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.

 5. Tabulated values are for tied joints, with butt weld ends. Performance of joints with flanged ends, and unrestrained in the will proceed the builded values.
- joints, will exceed tabulated values.

 6. Maximum test pressure: 1.5 X rated working pressure.

 7. Bellows are rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.

 8. Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

 9. Please refer to page 81 for part number example.

MATERIALS
Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.
FLMGES: ASTIM A105.
40-75 psig Series: 150 Ib ANSI B16.5 RFSO.
400-500 psig Series: 150 Ib ANSI B16.5 RFSO.
400-500 psig Series: 150 Ib ANSI B16.5 RFSO.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pipe: ASTM A-53/A-106.
40-75 psig Series: Std. Wt. pipe.
200-275 psig Series: Std. Wt. pipe.
400-500 psig Series: Std. Wt. pipe.
LIMERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HIMGES, GIMBALS: Carbon steel

UNIVERSAL EXPANSION JOINTS

10- / 12- / 14-Inch Nominal DIAMETER

	Р		NC	N-CONCURR	ENT MOVE	MENTS/SPRI	NG RATES	ES		
	R E		LATERA	L MOVEMEN	T/SPRING F	RATES		AXIA	AL	
s	S S	42 I	N O.A.L	54 I	N O.A.L	66 II	N O.A.L	M O	s	
l Z	U R	1067 M	IM O.A.L	1372 N	IM O.A.L	1676 M	M O.A.L	V E M	P R R A	
E	E	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	E N T	I T N E G	
	PSIG	IN	LB/IN	IN	LB/IN	IN	LB/IN	IN	LB/IN	
	KG/ CM ²	ММ	KG/MM	MM	KG/MM	MM	KG/MM	ММ	KG/MM	
	45	6.26	49	11.80	18	17.63	9	6.08	213	
10	3.2	159	0.9	300	0.32	448	0.16	154	4	
10	260	2.72	256	5.04	92	7.45	47	2.48	1127	
	18.3	69	4.6	128	1.65	189	0.84	63	20	
	45	5.07	80	10.01	27	15.23	13	6.4	208	
12	3.2	129	1.4	254	0.48	387	0.23	163	4	
12	200	2.41	369	4.67	123	7.02	60	2.85	976	
	14.1	61	6.6	119	2.20	178	1.07	72	17	
	50	4.80	95	9.24	33	13.90	16	6.23	229	
14	3.5	122	1.7	235	0.59	353	0.29	158	4	
'*	200	2.04	548	3.92	184	5.87	91	2.56	1255	
	14.1	52	9.8	100	3.29	149	1.63	65	22	

GENERAL NOTES

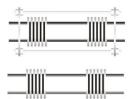
- 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 80.
- To increase cycle life or movements, please refer to graph on page 79.
- 4. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- 5. Tabulated values are for tied joints, with butt weld ends. Performance of joints with flanged ends, and unrestrained joints, will exceed tabulated values. Maximum test pressure: 1.5 X rated working pressure.
- Bellows are rated for 650°F: See page 31 for appropriate flange temperature/pressure
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.
- 9. Please refer to page 81 for part number example.

Phone: 713-731-0030

MATERIALS

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33. FLANGES: ASTM A105.

45-50 psig Series: 150 lb ANSI B16.5 RPSO. 200-260 psig Series: 300 lb ANSI B16.5


Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.

PIPE: ASTM A-53/A-106. 45-50 psig Series: Std. Wt. pipe. 200-260 psig Series: Std. Wt. pipe. Liners: A240-T304.

Covers: Carbon steel.

UNIVERSAL EXPANSION JOINTS

16- / 18- / 20-Inch Nominal Diameter

	P		NC	N-CONCURR	ENT MOVE	MENTS/SPRII	NG RATES	 S	
	R		LATERA	L MOVEMEN	T/SPRING F	RATES		AXIA	AL.
	E S	48 I	N O.A.L	60 I	IN O.A.L	72 II	N O.A.L	M O	s
S	S U	1219 M	IM O.A.L	1524 N	IM O.A.L	1829 M	M O.A.L	V E M	PR RA IT
Z E	R E	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	E N T	N E G
	PSIG	IN	LB/IN	IN	LB/IN	IN	LB/IN	IN	LB/IN
	KG/ CM ²	ММ	KG/MM	MM	KG/MM	MM	KG/MM	ММ	KG/MM
	35	6.73	70	11.60	29	16.70	16	7.75	211
	2.5	171	1.3	295	0.52	424	0.29	197	4
16	200	3.11	339	5.06	149	7.05	83	2.96	1235
10	14.1	79	6.1	129	2.67	179	1.49	75	22
	400	2.45	843	3.98	363	5.54	200	2.3	2894
	28.1	62	15.1	101	6.50	141	3.58	58	52
	40	5.91	98	10.18	41	14.66	22	7.59	238
	2.8	150	1.8	259	0.73	372	0.39	193	4
18	200	2.48	550	4.16	230	5.88	125	2.85	1394
10	14.1	63	9.8	106	4.12	149	2.24	72	25
	400	1.97	1365	3.16	595	4.37	331	1.98	3919
	28.1	50	24.4	80	10.65	111	5.92	50	70
	45	5.24	133	9.03	55	12.99	30	7.43	265
	3.2	133	2.4	229	0.98	330	0.54	189	5
20	200	2.26	725	3.75	306	5.27	167	2.77	1533
20	14.1	57	13.0	95	5.48	134	2.99	70	28
	400	1.59	2120	2.62	881	3.66	479	1.88	4365
	28.1	40	37.9	67	15.77	93	8.57	48	78

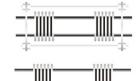
- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

- Rated life cycle at 650 F is 3000 cycles for any one tabulated movement.
 To combine axial, lateral and angular movements, please refer to page 80.
 To increase cycle life or movements, please refer to graph on page 79.
 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
 Tabulated values are for tied joints, with but weld ends. Performance of joints with flanged ends, and unrestrained joints, will exceed tabulated values.

- Maximum test pressure: 1.5 X rated working pressure.

 Bellows are rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.

 Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.


 Please refer to page 81 for part number example.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request.
Refer to page 33.
FLANGES: ASTIM A105.
35-45 psig Series: 125 lb Lt/Wt FFSO.
200 psig Series: 150 lb ANSI B16.5 RFSO.
400 psig Series: 300 lb ANSI B16.5 RFSO.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pipe: ASTM A-53/A-106.
35-45 psig Series: Std. Wt. pipe.
200 psig Series: Std. Wt. pipe.
400 psig Series: Std. Wt. pipe.
LIMERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HIMGES, GIMBALS: Carbon steel

UNIVERSAL EXPANSION JOINTS

22- / 24- / 26-Inch Nominal DIAMETER

	Р		NC	N-CONCURR	ENT MOVE	MENTS/SPRII	NG RATES	S	
	R		LATERA	L MOVEMENT	T/SPRING F	RATES		AXIA	AL
S	E S	48 I	N O.A.L	60 I	N O.A.L	72 II	N O.A.L	M O	s
l i	S U	1219 M	IM O.A.L	1524 N	IM O.A.L	1829 M	M O.A.L	V E M	PR RA IT
Z E	R E	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	E N T	N E G
	PSIG	IN	LB/IN	IN	LB/IN	IN	LB/IN	IN	LB/IN
	KG/ CM ²	MM	KG/MM	ММ	KG/MM	MM	KG/MM	ММ	KG/MM
	45	5.28	137	8.88	58	12.62	32	7.62	243
	3.2	134	2.5	226	1.04	321	0.57	194	4
22	165	2.24	811	3.66	347	5.12	191	2.9	1497
22	11.6	57	14.5	93	6.21	130	3.42	74	27
	350	1.48	2536	2.40	1069	3.33	585	1.84	4506
	24.6	38	45.4	61	19.13	85	10.47	47	81
	50	4.74	177	7.98	75	11.34	41	7.43	266
	3.5	120	3.2	203	1.34	288	0.73	189	5
24	160	2.06	1024	3.36	441	4.68	243	2.85	1636
24	11.2	52	18.3	85	7.89	119	4.35	72	29
	350	1.34	3163	2.15	1347	2.97	741	1.75	4925
	24.6	34	56.6	55	24.11	75	13.26	44	88
	50	3.88	268	6.83	107	9.91	57	7.37	289
	3.5	99	4.8	173	1.91	252	1.02	187	5
26	165	1.87	1450	3.41	544	5.02	281	3.85	1332
20	11.6	47	25.9	87	9.74	128	5.03	98	24
	335	1.55	3635	2.99	1252	4.52	622	3.67	2672
	23.5	39	65.1	76	22.41	115	11.13	93	48

86

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

 2. To combine axial, lateral and angular movements, please refer to page 80.

 3. To increase cycle life or movements, please refer to graph on page 79.

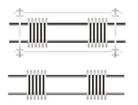
 4. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.

 5. Tabulated values are for tied joints, with butt weld ends. Performance of joints with flanged ends, and unrestrained in the provided provided bellows.

- joints, will exceed tabulated values.

 Maximum test pressure: 1.5 X rated working pressure.

 Bellows are rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.


 Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.
- Please refer to page 81 for part number example.

Phone: 713-731-0030

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request.
Refer to page 33.
FLAMOSE: ASTIM A105.
45-50 psig Series: 125 lb Lt/Wt FFSO.
160-165 psig Series: 150 lb ANSI B16.5 RFSO.
335-350 psig Series: 300 lb ANSI B16.5 RFSO.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pire: ASTIM A-53/A-106/A-285-C.
45-50 psig Series: Std. Wt. pipe/0.375-inch wall.
160-165 psig Series: Std. Wt. pipe/0.375-inch wall.
LINERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HINGES, GIMBALS: Carbon steel

UNIVERSAL EXPANSION JOINTS

28- / 30- / 32-Inch NOMINAL DIAMETER

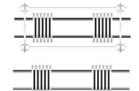
	Р		NC	N-CONCURR	ENT MOVE	MENTS/SPRII	NG RATES	 S	
	R		LATERA	L MOVEMEN	T/SPRING F	RATES		AXIA	AL
	E S	48 I	N O.A.L	60 I	N O.A.L	72 II	N O.A.L	M O	S
S	S U	1219 M	IM O.A.L	1524 N	IM O.A.L	1829 M	M O.A.L	V E M	P R R A
Z E	R E	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	E N T	I T N E G
	PSIG	IN	LB/IN	IN	LB/IN	IN	LB/IN	IN	LB/IN
	KG/ CM ²	ММ	KG/MM	MM	KG/MM	MM	KG/MM	ММ	KG/MM
	50	3.61	333	6.36	132	9.22	70	7.36	311
	3.5	92	6.0	162	2.36	234	1.25	187	6
28	160	1.74	1801	3.17	675	4.67	348	3.85	1437
20	11.2	44	32.2	81	12.08	119	6.23	98	26
	315	1.45	4512	2.82	1554	4.25	772	3.71	2881
	22.1	37	80.7	72	27.81	108	13.82	94	52
	50	3.65	316	6.41	126	9.30	67	7.96	257
	3.5	93	5.7	163	2.25	236	1.20	202	5
30	135	1.91	1708	3.48	640	5.13	330	4.53	1185
30	9.5	49	30.6	88	11.45	130	5.91	115	21
	290	1.55	4276	3.00	1473	4.52	731	4.23	2376
	20.4	39	76.5	76	26.36	115	13.08	107	43
	50	3.43	382	6.03	152	8.75	80	7.96	274
	3.5	87	6.8	153	2.72	222	1.43	202	5
32	135	1.79	2062	3.27	773	4.82	399	4.53	1266
32	9.5	45	36.5	83	13.83	122	7.14	115	23
	290	1.45	5163	2.81	1778	4.25	883	4.23	2537
	20.4	37	92.4	71	31.82	108	15.80	107	45

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

- Rated life cycle at 650 F is 3000 cycles for any one tabulated movement.
 To combine axial, lateral and angular movements, please refer to page 80.
 To increase cycle life or movements, please refer to graph on page 79.
 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
 Tabulated values are for tied joints, with but weld ends. Performance of joints with flanged ends, and unrestrained joints, will exceed tabulated values.
- Maximum test pressure: 1.5 X rated working pressure.

 Bellows are rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.

 Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.


 Please refer to page 81 for part number example.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request. Refer to page 33.
FLANGES: ASTIM A105.
50 psig Series: 125 lb Lt/Wt FFSO.
For 135-160 psig Series and 290-315 psig Series: Customer to specify actual flanges required. Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pipe: ASTM A-53/APJ-SLA-285-C.
50 psig Series: 0.375-inch wall.
135-160 psig Series: 0.375-inch wall.
290-315 psig Series: 0.375-inch wall.
LUMENS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HIMGES, GIMBALS: Carbon steel

UNIVERSAL EXPANSION JOINTS

34-/36-/38-Inch Nominal DIAMETER

	Р		NC	N-CONCURR	ENT MOVE	MENTS/SPRII	NG RATES	S	
	R		LATERA	L MOVEMEN	T/SPRING F	RATES		AXI	AL
s	E S	54 I	N O.A.L	66 I	N O.A.L	78 II	N O.A.L	M O	s
i i	S U	1372 M	IM O.A.L	1676 N	IM O.A.L	1981 M	M O.A.L	V E M	P R R A I T
Z E	R E	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	E N T	N E G
	PSIG	IN	LB/IN	IN	LB/IN	IN	LB/IN	IN	LB/IN
	KG/ CM ²	MM	KG/MM	ММ	KG/MM	MM	KG/MM	ММ	KG/MM
	50	4.44	273	6.97	129	9.56	74	7.96	292
	3.5	113	4.9	177	2.31	243	1.32	202	5
34	135	2.13	1683	3.54	723	5.01	398	4.5	1346
34	9.5	54	30.1	90	12.94	127	7.12	114	24
	275	1.58	4951	2.89	1856	4.25	958	4.24	2699
	19.3	40	88.6	73	33.21	108	17.14	108	48
	50	4.21	323	6.59	152	9.05	88	7.96	309
	3.5	107	5.8	167	2.72	230	1.57	202	6
36	135	2.02	1991	3.35	854	4.74	471	4.49	1427
36	9.5	51	35.6	85	15.28	120	8.43	114	26
	250	1.52	5853	2.78	2194	4.09	1132	4.31	2860
	17.6	39	104.7	71	39.26	104	20.26	109	51
	50	3.99	379.0	6.26	179	8.59	103	7.96	327
	3.5	101	6.8	159	3.20	218	1.84	202	6
38	130	1.93	2333.0	3.21	1001	4.53	552	4.52	1508
36	9.1	49	41.8	82	17.91	115	9.88	115	27
	250	1.44	6859	2.64	2571	3.88	1327	4.3	3021
	17.6	37	122.7	67	46.01	99	23.75	109	54

- GENERAL NOTES

 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

 2. To combine axial, lateral and angular movements, please refer to page 80.

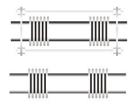
 3. To increase cycle life or movements, please refer to graph on page 79.

 4. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.

 5. Tabulated values are for tied joints, with butt weld ends. Performance of joints with flanged ends, and unrestrained in the provided provided bellows.
- joints, will exceed tabulated values.

 Maximum test pressure: 1.5 X rated working pressure.

 Bellows are rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.


 Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.

- Please refer to page 81 for part number example.

MATERIALS
BELLOWS: A240-T304. Alternate materials available upon request.
Refer to page 33.
FLAMOSE: ASTIM A105.
50 psig Series: 125 lb Lt/Wt FFSO.
For 130-135 psig Series and 250-275 psig Series: Customer to specify actual flanges required.
Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pire: ASTIM A-285-C.
50 psig Series: 0.375-inch wall.
130-135 psig Series: 0.375-inch wall.
250-275 psig Series: 0.500-inch wall.
LINERS: A240-T304.
COVERS: Carbon steel.
TIE RODS, HINGES, GIMBALS: Carbon steel

UNIVERSAL EXPANSION JOINTS

40- / 42-Inch NOMINAL DIAMETER

	P		NC	N-CONCURR	ENT MOVE	MENTS/SPRII	NG RATE	S	
	R		LATERA	L MOVEMEN	T/SPRING F	RATES		AXIA	AL
	E S	54 I	N O.A.L	66 I	N O.A.L	78 II	N O.A.L	M O	S
S	S U	1372 M	IM O.A.L	1676 N	IM O.A.L	1981 M	M O.A.L	V E M	PR RA IT
Z E	R E	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	E N T	N E G
	PSIG	IN	LB/IN	IN	LB/IN	IN	LB/IN	IN	LB/IN
	KG/ CM ²	ММ	KG/MM	MM	KG/MM	MM	KG/MM	ММ	KG/MM
	50	3.45	515	5.59	231	7.80	130	7.96	344
	3.5	88	9.2	142	4.13	198	2.33	202	6
40	120	1.66	3254	2.88	1312	4.15	700	4.58	1588
40	8.4	42	58.2	73	23.48	105	12.53	116	28
	225	1.21	9928	2.35	3419	3.55	1698	4.37	3183
	15.8	31	177.7	60	61.18	90	30.39	111	57
	50	3.29	595	5.34	267	7.45	150	7.96	362
	3.5	84	10.6	136	4.78	189	2.68	202	6
42	115	1.59	3756	2.77	1514	3.99	809	4.61	1669
44	8.1	40	67.2	70	27.09	101	14.48	117	30
	225	1.16	11459	2.24	3946	3.39	1960	4.37	3344
	15.8	29	205.1	57	70.62	86	35.08	111	60

GENERAL NOTES

- 1. Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 80. To increase cycle life or movements, please refer to graph on page 79.
- Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Tabulated values are for tied joints, with butt weld ends. Performance of joints with flanged ends, and unrestrained joints, will exceed tabulated values.
- Maximum test pressure: 1.5 X rated working pressure.
- Bellows are rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.
- 9. Please refer to page 81 for part number example.

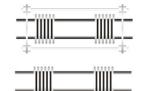
MATERIALS

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

FLANGES: ASTM A105.

50 psig Series: 125 lb Lt/Wt FFSO. For 115-120 psig Series and 225 psig Series: Customer to specify actual flanges required.

Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.


PIPE: ASTM A-53/A-106. 50-75 psig Series: Std.Wt. pipe. 275-500 psig Series: Std. Wt. pipe.

LINERS: A240-T304. Covers: Carbon steel.

UNIVERSAL EXPANSION JOINTS

44- / 46- / 48-Inch NOMINAL DIAMETER

	Р		NC	N-CONCURR	ENT MOVE	MENTS/SPRII	NG RATES	S	
	R		LATERA	L MOVEMEN	T/SPRING F	RATES		AXIA	AL
s	E S	48 I	N O.A.L	60 I	N O.A.L	72 II	N O.A.L	M O	s
l i	S U	1219 M	IM O.A.L	1524 N	IM O.A.L	1829 M	M O.A.L	V E M	PR RA IT
Z E	R E	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	E N T	N E G
	PSIG	IN	LB/IN	IN	LB/IN	IN	LB/IN	IN	LB/IN
	KG/ CM ²	ММ	KG/MM	ММ	KG/MM	MM	KG/MM	ММ	KG/MM
	50	2.42	1008	4.14	412	5.93	221	7.02	427
44	3.5	61	18.0	105	7.37	151	3.95	178	8
44	115	1.20	6238	2.28	2184	3.41	1094	4.5	1750
	8.1	30	111.6	58	39.08	87	19.58	114	31
	35	2.30	729	3.95	298	5.65	160	7.02	281
46	2.5	58	13.0	100	5.33	144	2.86	178	5
40	95	1.44	4513	2.75	1581	4.11	792	5.69	1150
	6.7	37	80.8	70	28.29	104	14.17	145	21
	35	2.16	907	3.65	375	5.19	203	6.58	335
48	2.5	55	16.2	93	6.71	132	3.63	167	6
40	95	1.30	5572	2.44	1984	3.62	1002	5.09	1372
	6.7	33	99.7	62	35.50	92	17.93	129	25

GENERAL NOTES

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 80.
- To increase cycle life or movements, please refer to graph on page 79. Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- 5. Tabulated values are for tied joints, with butt weld ends. Performance of joints with flanged ends, and unrestrained joints, will exceed tabulated values.

 6. Maximum test pressure: 1.5 X rated working pressure.

 7. Bellows are rated for 650°F: See page 31 for appropriate flange temperature/pressure.
- ratings.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.
- 9. Please refer to page 81 for part number example.

Phone: 713-731-0030

MATERIALS

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

FLANGES: ASTM A105.

35-50 psig Series: 125 lb Lt/Wt FFSO. 95-115 psig Series: Customer to specify actual flanges required.

Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.

PIPE: ASTM A-285-C.

35-50 psig Series: 0.375-inch wall. 95-115 psig Series: 0.375-inch wall.

Liners: A240-T304. Covers: Carbon steel.

UNIVERSAL EXPANSION JOINTS

50- THRU 72-INCH NOMINAL DIAMETER

	Р		NC	N-CONCURR	ENT MOVE	MENTS/SPRII	NG RATE	 S	
	R		LATERA	L MOVEMEN	T/SPRING F	RATES		AXIA	AL.
s	E S	50 I	N O.A.L	66 I	N O.A.L	78 I I	N O.A.L	M O	S P R
Ī	S U	1270 N	IM O.A.L	1676 N	M O.A.L	1981 M	M O.A.L	V E M	R A I T
Z E	R E	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	E N T	N E G
	PSIG	IN	LB/IN	IN	LB/IN	IN	LB/IN	IN	LB/IN
	KG/ CM ²	MM	KG/MM	MM	KG/MM	MM	KG/MM	ММ	KG/MM
50	75	1.74	3751	2.90	1610	4.10	887	5.4	1393
50	5.3	44	67.1	74	28.81	104	15.87	137	25
52	70	1.69	4209	2.81	1807	3.97	995	5.44	1450
52	4.9	43	75.3	71	32.34	101	17.81	138	26
54	70	1.46	5641	2.53	2274	3.64	1214	5.44	1506
34	4.9	37	100.9	64	40.69	92	21.73	138	27
60	60	1.26	8122	2.21	3205	3.20	1696	5.31	1677
00	4.2	32	145.3	56	57.36	81	30.35	135	30
66	55	1.16	10757	2.03	4245	2.93	2246	5.34	1847
	3.9	29	192.5	52	75.97	74	40.19	136	33
72	50	1.01	15372	1.82	5845	2.66	3041	5.4	2017
12	3.5	26	275.1	46	104.65	68	54.42	137	36

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.

- To combine axial, lateral and angular movements, please refer to page 80.

 To increase cycle life or movements, please refer to graph on page 79.

 Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Tabulated values are for tied joints, with butt weld ends. Performance of joints with flanged ends, and unrestrained joints, will exceed tabulated values.
- Maximum test pressure: 1.5 X rated working pressure.
- Bellows are rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.
- 9. Please refer to page 81 for part number example.

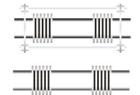
MATERIALS

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.

FLANGES: ASTM A105.

50-75 psig Series: 125 lb Lt/Wt FFSO. Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.

PIPE: ASTM A-285-C.


50-75 psig Series: 0.375-inch wall. **Liners:** A240-T304.

Covers: Carbon steel.

UNIVERSAL EXPANSION JOINTS

84- THRU 144-INCH NOMINAL DIAMETER

	Р		NC	N-CONCURR	ENT MOVE	MENTS/SPRII	NG RATES	S	
	R		LATERA	L MOVEMEN	T/SPRING F	RATES		AXIA	A L
s	E S	60 I	N O.A.L	72	N O.A.L	84 I I	N O.A.L	M O	S P R
l i	S U	1524 M	M O.A.L	1829 N	IM O.A.L	2134 M	M O.A.L	V E M	R A I T
Z E	R E	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	MOVEMENT	SPRING RATE	E N T	N E G
	PSIG	IN	LB/IN	IN	LB/IN	IN	LB/IN	IN	LB/IN
	KG/ CM ²	MM	KG/MM	ММ	KG/MM	ММ	KG/MM	ММ	KG/MM
84	45	1.10	17326	1.84	7437	2.59	4096	5.65	2358
04	3.2	28	310.1	47	133.09	66	73.30	144	42
96	40	0.97	24772	1.60	10757	2.24	5963	5.45	2699
90	2.8	25	443.3	41	192.50	57	106.71	138	48
108	35	0.88	36505	1.46	15669	2.06	8631	5.74	3040
100	2.5	22	653.3	37	280.40	52	154.46	146	54
120	30	0.67	65983	1.19	25681	1.74	13488	5.79	3380
120	2.1	17	1180.8	30	459.57	44	241.37	147	60
132	25	0.61	87604	1.09	34096	1.59	17908	5.82	3721
102	1.8	15	1567.7	28	610.16	40	320.47	148	67
144	25	0.46	156468	0.89	53883	1.34	26764	5.82	4062
144	1.8	12	2800.1	23	964.26	34	478.95	148	73

- Rated life cycle at 650°F is 3000 cycles for any one tabulated movement.
- To combine axial, lateral and angular movements, please refer to page 80.
- To increase cycle life or movements, please refer to graph on page 79.
- Rated bellows extension is equal to rated axial movement. Provided bellows is precompressed the amount of design extension. Installed O.A.L. will decrease by the amount of precompression.
- Tabulated values are for tied joints, with butt weld ends. Performance of joints with flanged ends, and unrestrained joints, will exceed tabulated values. Maximum test pressure: 1.5 X rated working pressure.
- Bellows are rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- Pressure thrust load applied to adjacent pipe anchors/equipment when unrestrained expansion joints are used.
- Please refer to page 81 for part number example.

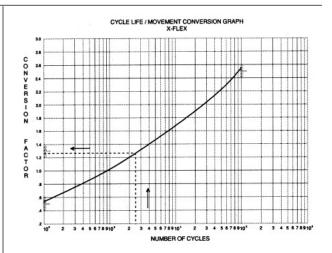
Phone: 713-731-0030

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33. FLANGES: ASTM A105.

40-45 psig Series: (96" and 84" dia) 125 lb Lt/Wt/FFSO.

25-30 psig Series: (108" and 144" dia) customer to specify actual flanges required. Plate flanges and angle flanges available for low pressure systems. Please refer to page 32.
Pipe: ASTM A-285-C.
25-45 psig Series: 0.375-inch walll.

Covers: Carbon steel.


CYCLE LIFE AND RATED MOVEMENT

X-Flex Externally Pressurized Expansion Joints

U.S. Bellows' X-Flex externally pressurized expansion joints are designed for 1,000 cycles for any one tabulated movement shown. Cycle life may be increased, or movement may be increased (decreasing the cycle life) by utilizing the graph shown on this page. The graph may also be used for superimposing more than one movement condition on the bellows at one time. It is important to remember that the movements shown in the bellows data pages do not allow for any installation misalignment. A proper specification for a bellows expansion joint should reflect what the actual system movements will be. To insure the highest quality bellows for the least cost, all movement conditions must be taken into account. Refer to the HOW TO ORDER section on page 91 for an example on the proper analysis and selection of an X-Flex expansion joint.

Examples of the movement conditions that typically occur in a piping system are:

- Installation: Allow one cycle for installation misalignment.
- ◆ **Start-Up/Shut-Down:** Movements produced between the minimum ambient temperature and the maximum start-up temperature. This is normally a very low number of cycles.
- Operating: Movements produced due to temperature fluctuations during system operation. This is typically a very small movement for a very large number of cycles.
- Excursion: Movement resulting from a worst case/upset scenario, occurring during system operation. This is normally a very low number of cycles.

How To Use Graph

- Enter the graph horizontally at the number of anticipated cycles or the movement condition being considered.
- ♦ Move vertically until the graph is intercepted.
- ♦ Move horizontally and read conversion factor.

Example:

Enter graph at 2500 cycles; read C.F. of 1.23

Pressure Relief Valve Connectors for a Power Generation Facility

Note: Maximum increase in movements for combined movement conditions shall not exceed 130% of catalog rated movements.

HOW TO SELECT AND ORDER

The first step in selecting the proper expansion joint assembly is to collect and organize as much information regarding the design and operating parameters of the system as possible. As a minimum the following information should be provided:

- ♦ Size of the line.
- ♦ Design pressure.
- Design temperature.
- ♦ Design movements and required cycle life.
- ♦ Overall length requirement, if any.
- ◆ Type of end connections.
- ♦ Bellows material.
- ♦ Pipe material.
- Flange specification and material.
- ♦ Type of expansion joint.
- ♦ Accessories.

EXAMPLE

- 1. Assume the following expansion joint design criteria:
- a) Line size: 12-inch nominal diameter.
- b) Design/operating pressure: 125 psig.
- c) Design/operating temperature: 353°F.
- d) Movements/cycle life

Installation: 0.25-inch compression;

0.25-inch extension.

Start-Up/Shut-Down: 6.0 inches compression; 250 cycles.

Operating: 1.0-inch compression; 2500 cycles.

e) End connections: 150 lb ANSI raised face slip-on

flanges: ASTM A-105 (carbon steel).

- f) Bellows material: B-168/Inconel® 600.
- g) Type: Single.
- h) Accessories: Drain and purge.
- 2. Turn to the Conversion Factor Graph, and calculate equivalent catalog movements.

Condi-	No.	Avial	Lat	Ang.	С E	Equivalent			
tion	Cycles	Axiai	Lai.	Ang.	C.F.	Axial	Lat.	Ang	
Install	1	.50	N/A	N/A	.49	.25	N/A	N/A	
Start-up/ Shut- Down	250	6.00	N/A	N/A	.72	4.32	N/A	N/A	
Excur- sion	2500	1.00	N/A	N/A	1.23	1.23	N/A	N/A	

Total = 5.80

- 3. Refer to page 96, 12-inch nominal diameter single X-Flex expansion joints, and go to the lowest pressure rating that is equal to or greater than specified design pressure (125 psig) which will be the 150 psig rated expansion joints. Compare the total equivalent catalog movements to those shown in the catalog, keeping in mind that the tabulated movements shown in the catalog are for 1,000 cycles for one movement only.
- 4. Select the appropriate expansion joint that meets the movement criteria. Since the total equivalent axial movement is 5.80-inches, the unit that is rated for eight inches is the correct selection.
- 5. Include the designations for the type (XS for X-Flex/single), drain connection (D), and purge connection (P).
- 6. The resulting U.S. Bellows part number would then be as follows:

How to Select & Order: www.usbellows.com/order

PART	Size	Pressure	LENGTH	END CONNECTIONS	Түре	Accessories	Material
Number							
	12	150	40	FF	VC	DD	INC COO
EXAMPLE	12	150	49	FF	XS	DP	INC. 600

EXTERNALLY PRESSURIZED EXPANSION JOINTS

SINGLE X-FLEX 150# Design

	AXIAL	SPRING		WEI	GHT	EFF	SHELL	ANCHOR	
S	MOVEMENT	RATE	O.A.L	FLANGED ENDS	WELD ENDS	AREA	O.D.	FOOT HEIGHT	ANCHOR FOOT
Z E	IN	LB/IN	IN	LB	LB	IN ²	IN	IN	TYPE
	ММ	KG/MM	MM	KG	KG	CM ²	ММ	MM	
	4	140	24	81	65	30.24	8.625		
3	102	2.5	610	37	30	195.05	219		
3	8	70	40	120	104	30.24	8.625		
	203	1.3	1016	55	47	195.05	219		
	4	140	25	94	68	30.24	8.625		
4	102	2.5	635	43	31	195.05	219	PLE	ASE
4	8	70	42	130	104	30.24	8.625		
	203	1.3	1067	59	47	195.05	219	CON	SULT
	4	328	28	153	123	53.85	10.750	FAC:	TORY
5	102	5.9	711	70	56	347.33	273	17.0	
3	8	164	46	226	196	53.85	10.750	REGA	RDING
	203	2.9	1168	103	89	347.33	273	ANIO	LIOD
	4	328	28	163	125	53.85	10.750	ANC	HOR
6	102	5.9	711	74	57	347.33	273	FO	ОТ
"	8	164	46	240	202	53.85	10.750		
	203	2.9	1168	109	92	347.33	273	USA	AGE
	4	403	28	243	183	87.09	14.000	ON S	NGLE
8	102	7.2	711	110	83	561.73	356		
"	8	210	44	332	272	87.09	14.000	X-F	LEX
	203	3.8	1118	151	124	39.59	356		
	4	502	29	224	138	128.28	16.00		
10	102	9.0	737	102	63	58.31	406		
'0	8	262	45	425	339	128.28	16.00		
	203	4.7	1143	193	154	58.31	406		

GENERAL NOTES

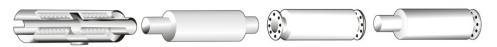
- 1. Rated life cycle at 650°F is 1000 cycles for full rated movement shown above.
- 2. To increase cycle life, please refer to graph on page 93.
- 3. Expansion joint is capable of taking 10% of rated movement as extension, with remaining 90% as axial compression.

 4. Maximum test pressure: 1.5 X rated working pressure.

 5. Bellows rated for 650°F: See page 31 for appropriate flange
- temperature/pressure ratings.
- 6. Maximum installation misalignment is ±1/4-inch axial and 1/16-inch lateral.

MATERIALS

Bellows: A240-T304. Alternate materials available upon request.


Refer to page 33. FLANGES: ASTM A105. 50 lb ANSI B16.5 RFSO. **PIPE:** ASTM A53/A106.

SHELL: ASTM A53/A106; API-5L.

U.S. Bellows, Inc. **EXTERNALLY PRESSURIZED EXPANSION JOINTS**

SINGLE X-FLEX 150# Design

	AXIAL	SPRING		WEI	GHT	EFF	SHELL	ANCHOR	
S	MOVEMENT	RATE	O.A.L	FLANGED ENDS	WELD ENDS	AREA	O.D.	FOOT HEIGHT	ANCHOR FOOT
Z E	IN	LB/IN	IN	LB	LB	IN ²	IN	IN	TYPE
	MM	KG/MM	MM	KG	KG	CM ²	ММ	ММ	
	4	922	30	436	308	180.81	18.000		
12	102	16.5	762	198	140.00	82.19	457		
12	8	461	49	611	483	180.81	18.000		
	203	82	1245	278	220	82.19	457		
	4	1010	30	516	336	211.83	20.000		
14	102	18.1	762	235	153	96.29	508	PLE	ASE
'4	8	505	49	711	531	211.83	20.000		
	203	9.0	1245	323	241	96.29	508	CONSULT	
	4	962	30	610	414	270.20	24.000	FAC:	ORY
16	102	17.2	762	277	188	122.82	610	17.0	
10	8	481	48	810	614	270.20	24.000	REGARDING	
	203	8.6	1219	368	279	122.82	610	ANIO	LIOD
	4	1080	30	661	401	331.61	24.000	ANC	HOR
18	102	19.3	762	300	182	150.73	610	FO	ОТ
10	8	540	48	877	617	331.61	24.000		
	203	9.7	1219	399	280	150.73	610	USA	AGE
	4	1196	31	985	685	399.31	30.00	ON S	NGLE
20	102	21.4	787	448	311	181.50	762		
20	8	598	49	1240	910	399.31	30.00	X-F	LEX
	203	10.7	1245	564	413	181.50	762		
	4	1430	32	1074	634	553.55	30.00		
24	102	25.6	813	488	288	251.61	762		
4	8	725	50	1304	864	553.55	30.00		
	203	13.0	1270	593	393	251.61	762		

GENERAL NOTES

- 1. Rated life cycle at 650°F is 1000 cycles for full rated movement shown above.
- 2. To increase cycle life, please refer to graph on page 93.
- 3. Expansion joint is capable of taking 10% of rated movement as extension, with remaining 90% as axial compression.
- 4. Maximum test pressure: 1.5 X rated working pressure.
 5. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- 6. Maximum installation misalignment is ±1/4-inch axial and 1/16-inch lateral.

MATERIALS

Bellows: A240-T304. Alternate materials available upon request.

Refer to page 33. FLANGES: ASTM A105. 150 lb ANSI B16.5 RFSO. **PIPE:** ASTM A53/A106.

SHELL: ASTM A53/A106; API-5L.

EXTERNALLY PRESSURIZED EXPANSION JOINTS

SINGLE X-FLEX 300# Design

	AXIAL	SPRING		WEI	GHT	EFF	SHELL	ANCHOR	
S	MOVEMENT	RATE	O.A.L	FLANGED ENDS	WELD ENDS	AREA	O.D.	FOOT HEIGHT	ANCHOR FOOT
Z E	IN	LB/IN	IN	LB	LB	IN ²	IN	IN	TYPE
	ММ	KG/MM	ММ	KG	KG	CM ²	ММ	ММ	
	4	280	24	94	68	30.24	8.625		
3	102	5.0	610	43	30.91	13.83	219		
3	8	140	40	136	110	30.42	8.625		
	203	2.5	1016	62	50.00	13.83	219		
	4	280	25	115	71	30.42	8.625		
4	102	5.0	635	52	32.27	13.83	219	PLE	ASE
4	8	140	42	154	110	30.42	8.625		
	203	2.5	1067	70	50.0	13.83	219	CON	SULT
	4	662	28	186	130	54.24	10.750	FAC:	TORY
5	102	11.8	711	85	59.09	24.65	273	17.0	
3	8	331	46	266	210	54.24	10.750	REGA	RDING
	203	5.9	1168	121	95.45	24.65	273	ANIO	LIOD
	4	662	28	210	132	54.24	10.750	ANC	HOR
6	102	11.8	711	95	60.00	24.65	273	FO	ОТ
"	8	331	46	294	216	54.24	10.750		
	203	5.9	1168	134	98.18	24.65	273	USA	AGE
	4	810	28	191	307	87.58	14.000	ON S	NGLE
8	102	14.5	711	87	139.55	39.81	356		
"	8	423	44	403	287	87.58	14.000	X-F	LEX
	203	7.6	1118	183	130.45	39.81	356		
	4	931	29	408	246	128.88	16.00		
10	102	16.7	737	185	112	58.58	406		
'0	8	504	45	527	365	128.88	16.00		
	203	9.0	1143	240	166	58.58	406		

GENERAL NOTES

- 1. Rated life cycle at 650°F is 1000 cycles for full rated movement shown above.
- 2. To increase cycle life, please refer to graph on page 93.
- 3. Expansion joint is capable of taking 10% of rated movement as extension, with remaining 90% as axial compression.

 4. Maximum test pressure: 1.5 X rated working pressure.

 5. Bellows rated for 650°F: See page 31 for appropriate flange
- temperature/pressure ratings.
- 6. Maximum installation misalignment is ±1/4-inch axial and 1/16-inch lateral.

MATERIALS

Bellows: A240-T304. Alternate materials available upon request.

Refer to page 33. FLANGES: ASTM A105. 300 lb ANSI B16.5 RFSO. **PIPE:** ASTM A53/A106.

SHELL: ASTM A53/A106; API-5L.

EXTERNALLY PRESSURIZED EXPANSION JOINTS

SINGLE X-FLEX 300# Design

	AXIAL	SPRING		WEI	GHT	EFF	SHELL	ANCHOR	
S	MOVEMENT	RATE	O.A.L	FLANGED ENDS	WELD ENDS	AREA	O.D.	FOOT HEIGHT	ANCHOR FOOT
Z E	IN	LB/IN	IN	LB	LB	IN ²	IN	IN	TYPE
	MM	KG/MM	MM	KG	KG	CM ²	ММ	ММ	
	4	1854	30	563	333	181.96	18.000		
12	102	33.2	762	256	151.36	82.71	457		
12	8	927	49	763	533	181.96	18.000		
	203	16.6	1245	347	242.27	82.71	457		
	4	2028	30	695	365	213.07	20.000		
14	102	36.3	762	316	165.91	96.85	508	PLE	ASE
'4	8	1014	49	919	589	213.07	20.000		
	203	18.1	1245	418	267.73	96.85	508	CONSULT	
	4	1770	30	836	456	271.60	24.000	FAC:	ORY
16	102	31.7	762	380	207.27	123.45	610	17.0	
10	8	885	48	1078	698	271.60	24.000	REGARDING	
	203	15.8	1219	490	317.27	123.45	610	ANIO	uon
	4	1986	26	948	448	333.16	24.000	ANC	HOR
18	102	35.5	660	431	203.64	151.44	610	FO	от
10	8	993	30	1211	711	333.16	24.000		
	203	17.8	762	550	323.18	151.44	610	USA	\GE
	4	2200	31	1338	708	401.01	30.00	ON S	NGLE
20	102	39.4	787	608	322	182.28	762		
20	8	1100	49	1645	1015	401.01	30.00	X-F	LEX
	203	19.7	1245	748	461	182.28	762		
	4	2630	32	1594	644	555.55	30.00		
24	102	47.1	813	725	293	252.52	762		
4	8	1315	50	1936	986	555.55	30.00		
	203	23.5	1270	880	448	252.52	762		

GENERAL NOTES

- 1. Rated life cycle at 650°F is 1000 cycles for full rated movement shown above.
- 2. To increase cycle life, please refer to graph on page 93.
- 3. Expansion joint is capable of taking 10% of rated movement as extension, with remaining 90% as axial compression.
- 4. Maximum test pressure: 1.5 X rated working pressure.
 5. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- 6. Maximum installation misalignment is ±1/4-inch axial and 1/16-inch lateral.

MATERIALS

Bellows: A240-T304. Alternate materials available upon request. Refer to page 33.


FLANGES: ASTM A105. 300 lb ANSI B16.5 RFSO. **PIPE:** ASTM A53/A106.

SHELL: ASTM A53/A106; API-5L.

EXTERNALLY PRESSURIZED EXPANSION JOINTS

DOUBLE X-FLEX 150# Design

	AXIAL	SPRING		WEI	GHT	EFF	SHELL	ANCHOR	
S	MOVEMENT	RATE	O.A.L	FLANGED ENDS	WELD ENDS	AREA	O.D.	FOOT HEIGHT	ANCHOR FOOT
Z E	IN	LB/IN	IN	LB	LB	IN ²	IN	IN	TYPE
	ММ	KG/MM	ММ	KG	KG	CM ²	MM	ММ	
	4	140	40	140	124	30.24	8.625	7.313	
3	203	2.5	1016	64	56	195.05	219	186	_
3	16	70	73	220	204	30.24	8.625	7.313	A
	406	1.3	1854	100	93	195.05	219	186	
	8	140	41	155	129	30.24	8.625	8.313	
4	203	2.5	1041	70	59	195.05	219	211	A
*	16	70	74	241	215	30.24	8.625	8.313	
	406	1.3	1880	110	98	195.05	219	211	
	8	312	45	257	227	53.85	10.750	9.375	
5	203	5.6	1143	117	103	347.33	273	238	В
3	16	156	82	401	371	53.85	10.750	9.375	D
	406	2.8	2083	182	169	347.33	273	238	
	8	328	45	262	232	53.85	10.750	9.375	
6	203	5.9	1143	119	105	347.33	273	238	В
"	16	164	82	418	388	53.85	10.750	9.375	Ь
	406	2.9	2083	190	176	347.33	273	238	
	8	403	45	412	352	87.09	14.000	11.000	
8	203	7.2	1143	187	160	561.73	356	279	С
"	16	210	77	591	531	87.09	14.000	11.000	
	406	3.8	1956	269	241	39.59	356	279	
	8	502	48	519	433	128.28	16.00	12.000	
10	203	9.0	1219	236	197	58.31	406	305	С
10	16	262	80	738	652	128.28	16.00	12.000	
	406	4.7	2032	335	296	58.31	406	305	

GENERAL NOTES

- 1. Rated life cycle at 650°F is 1000 cycles for full rated movement shown above.
- 2. To increase cycle life, please refer to graph on page 93.
- 3. Expansion joint is capable of taking 10% of rated movement as extension, with remaining 90% as axial compression.

 4. Maximum test pressure: 1.5 X rated working pressure.

 5. Bellows rated for 650°F: See page 31 for appropriate flange
- temperature/pressure ratings.
- 6. Maximum installation misalignment is ±1/4-inch axial and 1/16-inch lateral.

MATERIALS

Bellows: A240-T304. Alternate materials available upon request.

Refer to page 33. FLANGES: ASTM A105. 150 lb ANSI B16.5 RFSO. **PIPE:** ASTM A53/A106.

SHELL: ASTM A53/A106; API-5L.

EXTERNALLY PRESSURIZED EXPANSION JOINTS

DOUBLE X-FLEX 150# Design

	AXIAL	SPRING		WEI	GHT	EFF	SHELL	ANCHOR	
S	MOVEMENT	RATE	O.A.L	FLANGED ENDS	WELD ENDS	AREA	O.D.	FOOT HEIGHT	ANCHOR FOOT
Z E	IN	LB/IN	IN	LB	LB	IN ²	IN	IN	TYPE
	MM	KG/MM	ММ	KG	KG	CM ²	ММ	ММ	
	8	922	49	691	563	180.81	18.000	13.000	
12	203	16.5	1245	314	256	82.19	457	330	
12	16	461	87	1041	913	180.81	18.000	13.000	С
	406	8.2	2210	473	415	82.19	457	330	
	8	1010	49	792	612	211.83	20.000	14.000	
14	203	18.1	1245	360	278	96.29	508	356	С
'4	16	505	87	1180	1000	211.83	20.000	14.000	
	406	9.0	2210	536	455	96.29	508	356	
	8	962	47	950	754	270.20	24.000	16.000	
16	203	17.2	1194	432	343	122.82	610	406	D
10	16	481	83	1358	1162	270.20	24.000	16.000	
	406	8.8	2108	617	528	122.82	610	406	
	8	1080	47	1002	742	331.61	24.000	16.000	
18	203	19.3	1194	455	337	150.73	610	406	D
10	16	540	83	1433	1173	331.61	24.000	16.000	
	406	9.7	2108	651	533	150.73	610	406	
	8	1196	49	1435	1105	399.31	30.00	19.000	
20	203	21.4	1245	652	502	181.50	762	483	D
20	16	598	85	1947	1617	399.31	30.00	19.000	
	406	10.7	2159	885	735	181.50	762	483	
	8	1430	50	1463	1023	533.55	30.00	19.000	
24	203	25.6	1270	665	465	251.61	762	483	D
24	16	725	86	2025	1585	553.55	30.00	19.000	
	406	13.0	2184	920	720	251.61	762	483	

GENERAL NOTES

- 1. Rated life cycle at 650°F is 1000 cycles for full rated movement shown above.
- 2. To increase cycle life, please refer to graph on page 93.
- 3. Expansion joint is capable of taking 10% of rated movement as extension, with remaining 90% as axial compression.
- 4. Maximum test pressure: 1.5 X rated working pressure.
 5. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- 6. Maximum installation misalignment is ±1/4-inch axial and 1/16-inch lateral.

MATERIALS

Bellows: A240-T304. Alternate materials available upon request.

Refer to page 33. FLANGES: ASTM A105. 150 lb ANSI B16.5 RFSO. **PIPE:** ASTM A53/A106.

SHELL: ASTM A53/A106; API-5L.

EXTERNALLY PRESSURIZED EXPANSION JOINTS

DOUBLE X-FLEX 300# Design

	AXIAL	SPRING		WEI	GHT	EFF	SHELL	ANCHOR	
S	MOVEMENT	RATE	O.A.L	FLANGED ENDS	WELD ENDS	AREA	O.D.	FOOT HEIGHT	ANCHOR FOOT
Z E	IN	LB/IN	IN	LB	LB	IN ²	IN	IN	TYPE
	ММ	KG/MM	ММ	KG	KG	CM ²	ММ	ММ	
	8	280	40	156	130	30.42	8.625	7.313	
3	203	5.0	1016	71	59.09	13.83	219	186	^
3	16	140	73	242	216	30.42	8.625	7.313	Α
	406	2.5	1845	110	98.18	13.83	219	186	
	8	280	41	179	135	30.42	8.625	8.313	
4	203	5.0	1041	81	61.36	13.83	219	211	Α
4	16	140	74	271	227	30.42	8.625	8.313	A
	406	2.5	1880	123	103.16	13.83	219	211	
	8	662	45	297	241	54.24	10.750	9.375	
5	203	11.8	1143	135	109.55	24.65	273	238	В
'	16	331	82	457	401	54.24	10.750	9.375	
	406	5.9	2083	208	182.27	24.65	273	238	
	8	662	45	324	246	54.24	10.750	9.375	
6	203	11.8	1143	147	111.82	24.65	273	238	В
"	16	331	82	494	416	54.24	10.750	9.375	
	406	5.9	2083	226	189.09	24.65	273	238	
	8	810	45	484	368	87.58	14.000	11.000	
8	203	14.5	1143	220	167.27	39.81	356	279	С
°	16	423	77	677	561	87.58	14.000	11.000	
	406	7.6	1956	308	255.00	39.81	356	279	
	8	931	48	629	467	128.88	16.00	12.000	
10	203	16.7	1219	286	212	58.58	406	305	С
'0	16	504	80	867	705	128.88	16.00	12.000	
	406	9.0	2032	394	320	58.58	406	305	

GENERAL NOTES

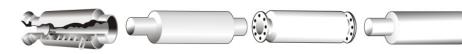
- 1. Rated life cycle at 650°F is 1000 cycles for full rated movement shown above.
- 2. To increase cycle life, please refer to graph on page 93.
- 3. Expansion joint is capable of taking 10% of rated movement as extension, with remaining 90% as axial compression.

 4. Maximum test pressure: 1.5 X rated working pressure.

 5. Bellows rated for 650°F: See page 31 for appropriate flange
- temperature/pressure ratings.
- 6. Maximum installation misalignment is ±1/4-inch axial and 1/16-inch lateral.

MATERIALS

Bellows: A240-T304. Alternate materials available upon request.


Refer to page 33. FLANGES: ASTM A105. 300 lb ANSI B16.5 RFSO. **PIPE:** ASTM A53/A106.

SHELL: ASTM A53/A106; API-5L.

EXTERNALLY PRESSURIZED EXPANSION JOINTS

DOUBLE X-FLEX 300# Design

	AXIAL	SPRING		WEI	GHT	EFF	SHELL	ANCHOR	
S	MOVEMENT	RATE	O.A.L	FLANGED ENDS	WELD ENDS	AREA	O.D.	FOOT HEIGHT	ANCHOR FOOT
Z E	IN	LB/IN	IN	LB	LB	IN ²	IN	IN	TYPE
	MM	KG/MM	MM	KG	KG	CM ²	MM	MM	
	4	1854	49	843	613	181.96	18.000	13.000	
40	102	33.2	1245	383	279	82.71	457	330	С
12	16	927	87	1243	1013	181.96	18.000	13.000	
	406	16.6	2210	565	460	82.71	457	330	
	8	2028	49	1000	670	213.07	20.000	14.000	
14	203	36.3	1245	455	305	96.85	508	356	С
14	16	1014	87	1446	1116	213.07	20.000	14.000	
	406	18.1	2210	657	507	96.85	508	356	
	8	1770	47	1217	837	271.60	24.000	16.000	
16	203	31.7	1194	553	381	123.45	610	406	D
16	16	885	83	1710	1330	271.60	24.000	16.000	
	406	15.8	2108	777	605	123.45	610	406	
	8	1986	47	1335	835	333.16	24.000	16.000	
10	203	35.5	1194	607	380	151.44	610	406	
18	16	993	83	1861	1361	333.16	24.000	16.000	D
	406	17.8	2108	846	619	151.44	610	406	
	8	2200	49	1841	1211	401.01	30.00	19.000	
20	203	39.4	1245	837	550	182.28	762	483	
20	16	1100	85	2458	1828	401.01	30.00	19.000	D
	406	19.7	2159	1117	831	182.28	762	483	
	8	2630	50	2095	1145	555.55	30.00	19.000	
24	203	47.1	1270	952	520	252.52	762	483	D
24	16	1315	86	2778	1828	555.55	30.00	19.000	
	406	23.5	2184	1263	831	252.52	762	483	

GENERAL NOTES

- 1. Rated life cycle at 650°F is 1000 cycles for full rated movement shown above.
- 2. To increase cycle life, please refer to graph on page 93.
- 3. Expansion joint is capable of taking 10% of rated movement as extension, with remaining 90% as axial compression.
- 4. Maximum test pressure: 1.5 X rated working pressure.
 5. Bellows rated for 650°F: See page 31 for appropriate flange temperature/pressure ratings.
- 6. Maximum installation misalignment is ±1/4-inch axial and 1/16-inch lateral.

MATERIALS

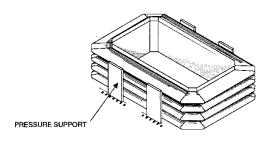
Bellows: A240-T304. Alternate materials available upon request.

Refer to page 33. FLANGES: ASTM A105. 300 lb ANSI B16.5 RFSO. **PIPE:** ASTM A53/A106.

SHELL: ASTM A53/A106; API-5L.

RECTANGULAR METALLIC EXPANSION JOINTS

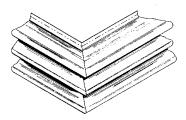
View online catalog section for rectangular metallic expansion joints: www.usbellows.com/rectangular


Rectangular metal expansion joints have a variety of applications in the power, petrochemical, refining, chemical, and steel industries. U.S. Bellows is fully prepared to service our customer's needs on these applications. Since there are no standardized duct sizes, and due to the wide range of pressure and temperature combinations, each rectangular metal expansion joint is customer engineered to provide the most economical design that will not sacrifice the integrity of the expansion joint or the system in which it is installed.

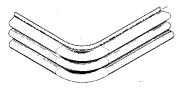
Like circular expansion joints, rectangular expansion joints absorb three types of movement: axial, lateral and angular. For the purpose of designing rectangular bellows, it is critical to know in which direction the lateral and angular movements will occur, i.e. parallel to the long and/or short side of the bellows. It is important to understand, however, that due to the large sizes that rectangular expansion joints frequently are, lateral deflection of single bellows is often impossible. The proper design for a rectangular bellows for

these types of movement is a universal expansion joint, in which two bellows elements connected with a center duct section (centerspool) are used in tandem. Due to the relatively long overall lengths and high costs associated with universal rectangular metal designs, it is recommended that U.S. Bellows' non-metallic expansion joints be considered for applications involving lateral movements, and also those that might possibly involve torsional movements.

Unlike circular bellows where the pressure stress is a circumferential membrane (hoop) stress, the rectangular metallic bellows must be designed for longitudinal (beam) bending stresses. Long unsupported lengths must frequently be supported to prevent excessive deflection and stresses of the bellows element. In certain applications, covers and liners can perform the function of pressure supports.

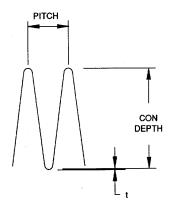

(2) TWO MITER CORNER SHOWN

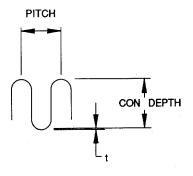
General arrangement of rectangular expansion joints with supported sides.


U.S. Bellows designs rectangular metallic expansion joints in accordance with the criteria published in Section C-8 of the *Standards of the Expansion Joints Manufacturers Association*. U.S. Bellows strongly encourages that customer to become familiar with the *Standards of the Expansion Joints Manufacturers Association* when specifying

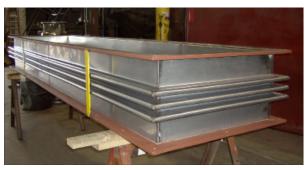
and purchasing all metallic expansion joints, and require them to be designed and fabricated in full accordance with those standards.

Typical convolution geometries and corner construction details are shown on this page. The "V" convolution profile will be supplied with single miter corners, unless otherwise specified. Round corner bellows will always be constructed using the "U" convolution profile.


Single Miter Corner

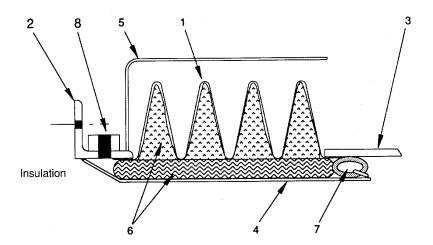

Rounded Corner

Camera Corner


"V" Profile

"U" Profile

240" x 80" Rectangular Metal Bellows with Round Corners



84" Long Rectangular Metallic Expansion Joint with Mitered Corners

U.S. Bellows, Inc.

ACCESSORIES

- 1. Bellows
- 2. Angle Flange
- 3. Weld End
- 4. Liner (Baffle)
- 5. Cover
- 6. Particulate Barrier/Insulation
- 7. Liner Seal
- 8. Purge

Liners

Internal liners are used to reduce turbulence across the bellows, and to protect the bellows from erosion. They are necessary when particulate barriers and purges are specified. Liners are normally required when ducts are refractory lined, as they become refractory lined as well. Applicable lateral and angular movements should be specified, in order that adequate clearance is provided in the liner design. Flow direction should be specified on expansion joints with combination ends.

Covers

External covers are recommended to protect the bellows from mechanical damage. They may also be utilized for the application of insulation when the ductwork is insulated as well. Covers may be provided in removable and non-removable configurations.

Particulate Barrier/Purge Connections

In systems that have a media with significant particulate content (i.e. fly ash or catalyst), a barrier of ceramic fiber can be utilized to prevent corrosion and restricted bellows flexibility resulting from the accumulation of the particulate. Purging systems may also be used to perform this function. Liners must be installed when a particulate barrier or purge connection is specified.

Hardware

Rectangular expansion joints may come equipped with hinges, tie rods, etc., that can be used to control movements, restrain pressure thrust, or support external loads. This hardware may be installed internally or externally.

View online catalog section for expansion joint accessories: www.usbellows.com/accessories

Customer:		Date:	-	Page	
Project:		Prepared By:			
Applicable Codes and Sta	andards: B31.1, B31.3, Sect 8 Div 1				
Item or Tag Number:					
Quantity:					
Size (Specify inside or ou	itside duct dimensions):				
Orientation (Horizontal/Ve	ertical/Inclined):				
Style or Type (single, uni	versal, hinged, gimbal, etc.):				
Corner Type:					
End	Thickness/Flange Size				
Connections	Material				
Pressure	Design				
(PSI/INCHES WATER)	Operating				
	Design				
TEMPERATURE	Operating				
	Installation				
	Media				
Media	Flow Velocity				
	Flow Direction				
	Axial Extension				
	Axial Compression				
Movements	Lateral (Parallel to Short Side)				
	Lateral (Parallel to Long Side) Angular (Parallel to Short Side)				
	Angular (Parallel to Snort Side) Angular (Parallel to Long Side)				
	Bellows				
Materials	Dellows				
	Liner				
	Cover				
DIMENSIONS	Overall Length				
Maximum Spring Rates	Axial				
	Lateral (Parallel to Short Side)				
	Lateral (Parallel to Long Side)				
	Angular (Parallel to Short Side)				
	Angular (Parallel to Long Side)				
Quality	Bellows Corner Weld				
Assurance	Bellows Attachment Weld				

THICK-WALL EXPANSION JOINTS

These may be cost-effective for large-diameter piping systems which operate at low pressure. Metals can be selected to satisfy different temperature conditions. The distribution of axial, angular, and lateral forces will be different when thick-wall expansion joints are used. We can provide your design engineers with the potential forces and movements for proper design of the structural members supporting the system. These joints have a long life which justifies the initial investment. See Figure 1 below

72" Diameter Thick-Wall Expansion Joint Being Shipped to a Sulfuric Acid Plant

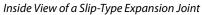
View online catalog section for thick-wall expansion joints: www.usbellows.com/thick-wall expansion joints: www.usbellows.com/thick-wall expansion joints:

SLIP-TYPE EXPANSION JOINTS

These are used when the primary problem is a large axial movement. Materials can be selected to accommodate high temperatures and pressures. Design details include selection of packing and seals and perhaps resistance to abrasive solids. Some applications may require surfaces to minimize abrasive wear. Special features such as "wipers" can be included to prevent potential clogging of the space provided for slip movement. See Figure 2 below

SLIP-TYPE EXPANSION JOINTS

AARREL 60
AARREL 60
ELEVATION


ALLEN HEX HEAD BARREL
SCREWS
OUTER
BARREL

VE
PACKING CARRIER

SECTION A-A

PIPING TECHNOLOGY & PRODUCTS, INC. Figure 2

30" Slip-Type Expansion Joint

View online catalog section for slip-type expansion joints: www.usbellows.com/slip-type

HINGED EXPANSION JOINTS

Hinged Expansion Joints contain hinges or pivots which allow the unit to bend in a single plane. These units are designed to restrict axial deflection, either in extension or compression. The hinge mechanism is typically designed to accept full pressure thrust. Also, because of the hinge mechanism's design, shear loads, such as from the weight of adjacent piping, can be accepted by this expansion joint, relieving the piping designer of having to provide additional supports and anchors required by the single type.

Some hinge types can be provided with hinge pin holes which are slotted to permit limited axial travel. These "slotted hinge" types will not resist pressure thrust forces, and anchoring must be provided. This catalog only depicts the fully restrained hinged type. If axial travel is desired, the piping designer should clearly state that the slotted hinge type is wanted in the design requirements, and he should provide for pressure thrust anchoring. On the other hand, if the full axial restraint of the hinged type is desired, the piping designer should understand that there is no allowance in the expansion joint for any axial travel, including none for any installation misalignment.

Hinged and Universal Expansion Joints with Refractory Lining

GIMBAL EXPANSION JOINTS

The gimbal expansion joint is basically the same as the hinge type, except that instead of being limited to deflection in only one plane, it can accept bending or angulation in any plane. It contains two sets of hinge pins or pivots, the axis of each set perpendicular to the other. Each set of pins is connected to each other with a central gimbal ring, in much the same way that a universal joint on an automobile works. This unit provides the same type of restraint and resistance to axial forces, such as the pressure thrust, and to shear forces as the hinge type.

Gimbal Metallic Universal Expansion Joint

REFRACTORY-LINED EXPANSION JOINTS

Depending on the temperature, pressure, movement and flow media conditions, refractory-lined expansion joints can be hinged, in-line pressure balanced, gimbal, tied-universal and can also include pantographic linkage. For hot applications (up to 1400°F), the bellows is packed with KO wool and lined with insulating refractory.

The refractory lining allows for the use of carbon steel pipe instead of 300 series stainless steel. It can reduce the pipe wall temperature to between 300-450°F and also protect the bellows from abrasion caused by the flow of abrasive particles. Refractory lined expansion joints are used in Fluid Catalytic Cracking Units (FCCU), furnaces, hot gas turbines, styrene plants, fluidized bed boilers, kilns, power recovery trains and thermal oxidizers. Refractory-lined expansion joints are custom designed for each application due to the extreme environments.

Universal Expansion Joint with Refractory Lining

Close Up of Refractory Lining for a FCCU Expansion Joint

Refractory-Lined Expansion Joint about to be Shipped

FABRIC EXPANSION JOINTS

These are often used in ducts which carry hot gases at low pressures. The major design parameters are the temperatures and flow rates of the gases and the amount and abrasiveness of solids suspended in the gases. Layers of different fabrics, insulation, and metal foils can be combined to accommodate the temperatures and pressures in the system. The fabric belt may need to be replaced periodically.

DUCT EXPANSION JOINT (Low Temperature)

128" x 129" Rectangular Fabric Expansion Joints

68" Long Air Duct Fabric Expansion Joint

Fabric Expansion Joints for a Gas Turbine Power Plant

Rectangular & Round

Pressure:	3 p.s.i. (Max.), Positive Pressure only					
Temperature:	400° F (Max.) 40° F (Min.)					
Movements:	Flange-to-Flange Dimension					
	10"	12"	14"	16"	18"	
Axial Compression	1/2"	1"	1 1/2"	2 1/2"	3"	
Axial Extension	1/2"	1/2"	1/2"	1/2"	1/2"	
Lateral offset	1/4"	1/2"	3/4"	1"	1"	

View online catalog section for fabric expansion joints: www.usbellows.com/fabric

DUCT EXPANSION JOINT (High Temperature - Up To 1200° F)

24" Diameter Fabric Expansion Joints for a Hot Air Blower

Rectangular & Round

Pressure:	3 p.s.i. (Max.), 27" H ₂ O (Vacuum Max.)					
Temperature:	600° F (Max.), 40° F (Min.) specify					
Movements:	Flange-to-Flange Dimension					
	10"	12"	14"	16"	18"	
Axial Compression	1/2"	3/4"	1 1/4"	1 1/2"	2 "	
Axial Extension	1/2"	1/2"	1/2"	1/2"	1/2"	
Lateral offset	1/4"	3/8"	1/2″	3/4"	1″	

Single Flanged Expansion Joint for an Exhaust Duct

This single flanged metallic expansion joint was manufactured from 304 stainless steel bellows with carbon steel flanges. It has a diameter of 200" and an overall length of 150". It will be used in an exhaust duct application in a power plant. A hydro-test was performed prior to shipping to Orlando, Florida.

76" Diameter Single Expansion Joints with Refractory Lining

U.S. Bellows, Inc. fabricated several expansion joints composed of 321 stainless steel and A588-A COR-TEN angle flanges. The expansion joints measure 76" in diameter and have an overall length of 27¾". Each expansion joint is also lined with 4" thick refractory lining. The bellows long seams were 100% x-rayed and dye-penetrant tested. The bellows will be used in flue gas service associated with a

clean fuels project at an oil refinery.

Same-Day Turn Around Service by Refurbishing an 8" Single Expansion Joint for an Emergency Shutdown

U.S. Bellows, Inc. received this single expansion joint in the morning, refurbished it by adding new bellows and limit rods, and then shipped it the very same day. The existing expansion joint had 321 stainless steel bellows with a 1,500 lb. flange on one side and a 150 lb. flange on the other side. U.S. Bellows, Inc. manufactured new 321 stainless steel bellows and reused the existing flanges by sandblasting and then painting them for protection. Same day delivery enabled the customer to resume operations with minimum loss of time and production.

18" Single Expansion Joints for an Offshore Oil Platform in Korea

These expansion joints measure 18" in diameter x 11" in overall length. Each expansion joint is fabricated with 300 lb. stainless steel raised face slip on flanges. The liner, cover, and tie-rods are fabricated from 316L stainless steel. The design pressure is 403 PSI, and the design temperature is 200°F. Dye-penetrant tests, hydro-tests at 604 PSIG, and 100% x-ray tests of the bellows' longitudinal weld seams were performed to assure quality.

Phone: 713-731-0030 112 sales@usbellows.com

Single Tied Metallic Expansion Joints with Two-Ply Alloy Bellows

This single tied metallic expansion joint was designed with two-ply alloy bellows for a design pressure of 243 PSIG at 108°F. The expansion joint has an axial compression of 0.020″ and a lateral movement of 0.200″. The axial spring rate is 13,320 lb./in. and the lateral spring rate is 121,202 lb./in. The bellows and flanges were 100% x-ray tested and the bellows were 100% dye-penetrant tested for quality before being shipped to the customer.

Flanged Expansion Joints for a Thermal Power Plant

These 6" and 8" in diameter flanged expansion joints were shipped to the customer a month ahead of schedule. The bellows are stock 321 stainless steel and the flanges are 150 carbon steel. They can take 1.22" axial deflection, plus or minus 0.26" lateral deflection and are designed to handle temperatures ranging from -24°F to 800°F. These expansion joints are rated up to 150 PSI and come equipped with an internal flow liner to allow for smooth fluid flow. They were 100% dye-penetrant tested and air & soap bubble tested to ensure quality.

18" Expansion Joints that Required Helium Leak Testing

This order required custom engineering to design and manufacture these expansion joints due to their critical service condition requirements. U.S. Bellows manufactured and tested these expansion joints to the customer specifications, EJMA Standards and U.S. Bellows quality standards. The expansion joints were designed for a pressure of 176 PSIG at 500°F. The axial extension is .5″ and the axial compression is 1.5.″ The 18″ expansion joints were fabricated from 304 stainless steel with specially designed and machined flange faces with a gasket groove. Each expansion joint was helium leak tested and 100% x-rayed and dye-penetrant examined.

5 Expansion Joints for a Heat Exchanger Company in Japan

These expansion joints were fabricated from ASTM-A-240 Type 321 stainless steel bellows and liners. The shell material is ASTM-A-516 Grade 70. They are 32" diameter with an overall length of 26". Each joint weighs 280 lb. They were designed for 150 PSIG at 650°F with a travel capacity of 0.33" axial compression and 0.08" lateral deflection. They absorb differential expansion between the shell side and tube side of a heat exchanger. They were hydrostatically tested to 208 PSIG to comply with the Japanese code, Ministry of Health, Labor and Welfare (MHLW) and the ASME Pressure Vessel Codes.

Single Expansion Joint Assembly for an Oil Refinery in South Africa

This single expansion joint assembly was fabricated with a single-ply 304 stainless steel bellows, and carbon steel pipe, miter bends, and limit rods. It measured 12 feet 2 inches from the center to center of the elbows. These bellows were designed with a low spring rate to meet the allowable forces and movements on the compressor inlet nozzle. All welds were air tested and spot x-rayed to assure quality and performance. This unit was completed in 3 weeks to meet the customer's construction schedule.

188 Single Tied Expansion Joints for a Construction Company

These products are single tied expansion joints with 150 lb. flange drilling. They were fabricated completely of 316 stainless steel. They range in size from 6" to 18" in diameter and weigh between 40 lb. to 140 lb. each. Their travel capacity ranges from 0.88" to 1.2" at 25 PSIG and 180°F. The expansion joints are used in a water treatment piping system facility. The bellows longitudinal and attachment weld seams were 100% dye-penetrant examined.

The expansion joints were pneumatically tested at 15 PSIG for performance and quality assurance.

14 Single Reinforced Metal Expansion Joints

These single reinforced expansion joints with equalizing rings are used in heat exchangers. The bellows are fabricated from ASTM B 443 Inconel® 625 LCF. The weld ends and the reinforcing rings/root rings are carbon steel. The expansion joints are 52" and 57" diameter with an overall length of 15 $\frac{1}{2}$ " and 16 $\frac{1}{2}$ ". They are capable of moving 0.6" in extension at 158 PSIG at 300°F. The units were fabricated to ASME Section VIII. The bellows and pipe longitudinal weld seams were 100% x-rayed. In addition, they were 100%

dye-penetrant examined and hydrostatic tested to 205 PSIG.

4 Convolution Expansion Joints for an Oil Company in India

This high pressure expansion joint is a single four convolution SB-443 INCO 625LCF bellow with 3 equalizing rings, 2 neck bands, 1 internal liner and 2 weld ends all fabricated from SA-240 type 347 stainless steel. The equalizing rings enable the joint to withstand a maximum allowable pressure of 1,170 PSIG at 815°F. The equalizing rings allow the use of a thinner more compact and flexible bellow thereby saving space and increasing the expansion joint cycle life. It is 14.25" long with a calculated cycle life of 772 cycles.

Single Tied Expansion Joints for an Oil Refinery

This single tied expansion joint was designed to withstand 400 PSIG and 200°F. The bellow was manufactured using B443 material (Inconel® 625) with a 300 lb. carbon steel flange. It measures 8" x 16" with 3/16" lateral movement. Pressure testing and 100% dye-penetrant tests were performed to ensure quality. The final product was shipped to a customer in Bakersfield, California.

U.S. Bellows, Inc. recently refurbished a 3" O.A.L. single bellows with flanges for a marine vessel in Texas. Within a two day span, the replacement bellows was fabricated, welded to the existing 5/8" flanges, and shipped to the marine vessel to resume operation. The replacement bellows, fabricated from 321 stainless steel, is designed for

Immediate Refurbishment of a 3" O.A.L Single Bellows

Failed Bellows

Replacement Bellows

150 PSIG and 800°F with 0.66" of axial movement. To ensure quality, a 100% dye-penetrant test and a soap leak test were performed prior to delivery.

Clamshell Bellows for a Shell and Tube Heat Exchanger

This clamshell bellows was fabricated for a shell and tube heat exchanger. The clamshell bellows is designed and fabricated per ASME VIII Div. 1 appendix 26. It has a 14" diameter and was designed at 150°F and 150 PSIG. In order to detect any leaks, prior to and following forming, the heat exchanger and its welds were subjected to a series of tests such as the dye-penetrant test (100%), x-ray test (100%) and air test.

Three-day Emergency Fabrication of a 40" I.D. Expansion Joint

Within a three day span, this 40" I.D., single coded, clamshell expansion joint was fabricated for a chemical plant in Beaumont, Texas. Following contact by an employee at the plant, the U.S Bellows' on-call team was immediately paged. Three days later, the bellows had been successfully fabricated, welded to an A516-70 heat exchanger shell and shipped to the chemical plant to resume operation. The bellows was fabricated from A240 tp 321SS and designed at 50 PSIG and 750°F. In order to detect any

leaks in the weld, the bellows' long seam weld was 100% x-rayed and the unit was 100% dye-penetrant tested.

10" Single Tied Titanium Expansion Joints

These 10" single tied titanium expansion joints were manufactured to be utilized in a chemical plant in Kingsport, Tennessee. These single expansion joints are bellows elements with end connections that allow movement in any direction or plane. However, the piping must also be guided in the same direction of the movement. The tie rods restrain the full pressure thrust. They were 100% dye-penetrant examined before being shipped to the customer.

Emergency Order for a 48" Diameter Expansion Joint

U.S. Bellows, Inc. rushed to an emergency call of an Alaskan petroleum firm. The firm called upon U.S. Bellows' 24 x 7 Quick-Turn/Emergency service to aid them in the immediate replacement of a defective, 48" diameter expansion joint when their G417 Pump failed suddenly during the plant startup. U.S. Bellows received the emergency call on Friday at 5:30 p.m.

It was built and shipped to the location on the same day. On Sunday, the expansion joint was installed at the customer's location.

66" Hinged Expansion Joint Designed for Gas Service

This single hinged expansion joint was designed for sulphur dioxide service in a sulphuric acid plant. It was fabricated with 321 stainless steel bellows and liner, and A-516 GR 70 carbon steel hinge plates and pipe. The pipe has a 66" outside diameter and 35-1/4" overall length. The expansion joint was designed for 6° angular movement and 3 PSIG at 680°F. The bellows and pipe long seams were 100% x-rayed, and all the welds were 100% dye-penetrant tested. A soap and air test at 15 PSIG was conducted prior to shipment.

24" Universal Hinged Expansion Joint

This universal hinged expansion joint includes elbows on both ends for an overall length of 125 5/8". It is designed with Inconel® 625 bellows, a 304 stainless steel liner, and carbon steel 150 lb. flanges. The hinges allow for up to 5 degrees of angular movement. The longitudinal weld seams were 100%

dye-penetrant examined prior to being formed. The expansion joint was hydro-tested at 188 PSIG.

Hinged and Universal Expansion Joints with Refractory Lining

U.S. Bellows, Inc. designed and fabricated refractory lined single-hinged and universal expansion joints for a design pressure of 75.4 PSIG and 1400°F temperature. Each expansion joint was 100% x-ray tested along the weld seams and pneumatically tested to 83 PSIG.

48" Diameter Refractory Lined Expansion Joint for a Chemical Plant in Ecuador

This refractory lined expansion joint was designed with pentographic linkages for a chemical plant. It was designed for 60 PSIG and 1450°F with a 4" thick refractory installed per UOP specifications. The bellows was constructed from SB-443 Inconel® 625, and the weld ends, hinges, pantographic linkages, and floating ring were made from A516-70. The bellows, weld ends, and spool long seam welds were 100% x-rayed and 100% dye-penetrant tested per ASME standards. A pneumatic test was performed at 15 PSIG for the entire expansion joint assembly prior to shipping.

24" In-line Pressure Balanced Expansion Joint

U.S. Bellows, Inc. fabricated three 24" in-line pressure balanced expansion joints for a petrochemical plant in Venezuela. In order to absorb partial axial and lateral movements, these expansion joints were designed at 175 PSIG and 610°F. The bellows are composed of Inconel® 625LCF material and the flanges and liners are constructed from SA516 Grade 70 material.

26" Diameter Pressure Balanced Elbow Expansion Joint

This 26" diameter pressure balanced elbow expansion joint was received for a complete refurbishment. New SA-240 type 321 stainless steel bellows were used to replace the original bellows, and the tie rods and flow liners were also replaced. All carbon steel parts were painted with a universal primer. This expansion joint measures over 17 feet long center to center of elbows, and is currently being used in an effluent header at Cedar Bayou plant.

60" Diameter Universal Pressure Balanced Elbow Expansion Joint

This universal pressure balanced elbow expansion joints was fabricated with 304 stainless steel bellows and carbon steel reinforcing root rings. The expansion joint was designed for an axial compression of .25″, extension of .75″, and lateral of 1″. It has an overall length of 237″ from center line or elbow to face of the weld end. All expansion joints were designed for 100 PSIG and hydro-tested at 150 PSIG.

This 770 lb. pressure balanced expansion joint was designed for a company in Ohio. The expansion joint, designed for 450 PSIG and 1350°F, will be used for wind tunnel testing of airplanes and engines. With an overall length of 70 ", it consists of four 8 " diameter bellows with 3 plies of Inco 625 Gr1 material, an 8" diameter Inco 800 HT elbow, four 74 A193 B8 tie rods, and four 2" thick A240

8" Diameter Pressure Balanced Expansion Joint

tp304H rings. To ensure quality, 100% x-ray and 100% dye-penetrant tests were performed on the bellows. A pneumatic test at 550 PSIG was conducted on the entire assembly prior to shipping.

Elbow Pressure Balanced Expansion Joints for a Power Station in Canada

These joints are designed at 150 PSIG and 450°F to allow lateral and axial movements in a 42″ steam line. The expansion joints were designed and fabricated per EJMA and B31.1 code. The expansion joints were hydrotested at 225 PSIG and 75°F. In order to detect any leaks in the weld, prior to and following forming, bellows long seam welds and attachment welds were 100% dye-penetrant tested. The expansion joints were shipped to a power station in Canada.

72" Universal Pressure Balanced Expansion Joint

This 72-inch universal pressure balanced expansion joint was designed for a chemical plant in Pasadena, Texas. The expansion joint is designed for 30 PSIG at 200°F and full vacuum. All materials in the "wetted surface" are TP-316/316L stainless steel. Design movements are 3-inch axial compression and 5 ¾ -inch lateral offset. The assembly is approximately 24-feet long and 14,150 lb.

30" Spent Catalyst Standpipe Metallic Expansion Joint with Pantographic Linkage

This 30" spent standpipe catalyst metallic expansion joint was fabricated for a refinery in Montana. The overall installed length of the expansion joint is 89". The design pressure was 19 PSIG and the design temperature was 1050°F. The expansion joint is fabricated entirely from 321 stainless steel, except for the carbon steel flanges to match the existing nozzle material and drilling. The assembly is lined with abrasion resistant refractory which prevents erosion of the 321 stainless steel piping. The pantographic linkage, shown in the photo, is designed to distribute the axial compression between the two bellows and support the weight of the center pipe between the bellows.

80" Refractory Lined Tied Universal Expansion Joint

This 36'-0" long refractory lined tied universal expansion joint weighs 54,000 lb. and has two-ply Inconel® 625 LCF bellows, tie rods, slotted hinges, insulation bags and liner seals. It is designed to operate at 58 PSIG and temperatures up to 1,450°F. The expansion joint was preset for 6" lateral travel and is capable of lateral travel up to 13".

Flass

60" Diameter Tied Refractory Lined Universal Expansion Joints

These refractory lined universal expansion joints were fabricated for a carbon monoxide ducting system at a chemical refinery. The expansion joints are lined with a 3/4" thick abrasion resistant refractory lining with hexagonal mesh reinforced anchor. A240 TP 304 material was used to fabricate the bellows and flanges and A240 TP 310 material was used for the spool. Designed for 2 PSIG, the joints were air tested at 5 PSIG to ensure quality.

A dye-penetrant test was also implemented on the bellows' long seam and attachment welds. These expansion joints were fabricated and designed per B31.3 and EJMA standards.

60" Diameter Double Hinged Refractory Lined Expansion Joint

This expansion joint with an overall length of 40′-0″ has a 4″ thick refractory lining installed per UOP specifications. It also consists of testable two plies SB-443/Inco 625LCF bellows, 5/8″ thick, A516-70 mitered elbows, 5/8″ thick, A516-70 spool, A240-304 liners, A516-70 hinges, A193, GR 7 tie rods, and A516-70 lugs. It was designed for 50 PSIG and 1440°F with 3″ of lateral

movement per B31.3 and EJMA standards. A 100% x-ray and 100% dye-penetrant tests and a pneumatic test at 75 PSIG were conducted on the assembly prior to shipping.

55" O.D. Refractory Lined Universal Gimbal Expansion Joint

Two 55" O.D. refractory lined universal gimbal expansion joints were custom designed for a refinery in Joliet. They are equipped with slotted hinges with an overall length of 163" and 286" respectively. The 163" O.A.L. expansion joint, designed for 60 PSIG and 1020°F, will be used at the reactor stand pipe of the refinery. The 286"O.A.L. expansion joint will be used for the regenerator stand pipe of the refinery and it is designed for 57 PSIG and 1300°F. Both expansion joints consist of a A516 Gr70 pipe, two SB-443 two-ply bellows and a

slotted hinge. To ensure quality, 100% dye-penetrant, 100% x-ray and pressure tests were performed on the bellows. Pneumatic and vacuum tests were also conducted on the assemblies and between bellows dry plies prior to shipping.

44" Universal Refractory Lined Expansion Joint

U.S. Bellows, Inc. specially designed and fabricated a 44-inch, O.D Universal, refractory lined expansion joint for a chemical plant in Venezuela. The expansion joint was designed for 100 PSIG at 1,000°F and fabricated with 321 SS two-ply tested bellows, A-387 GR11 weld ends, 14 Ga. 304 SS, Hexmesh anchoring system and Resco 17 EMC refractory. The expansion joint was also designed and fabricated per B31.3 and EJMA Standards.

Stainless Steel Expansion Joint for Catalytic Cracker Application

The expansion joint that is being prepared for shipping at right is a stainless steel, universal expansion joint. This unit was refractory lined before being shipped to a refinery for installation in their piping system for a catalytic cracker application.

92" I.D. Toroidal Bellow Expansion Joint for an ASME "U" Stamp Heat Exchanger Shell

The toroidal shape gives the bellow the unique ability to carry high pressures; conversely, it also permits modest deflection ability. The expansion joint was designed for 400 PSIG at 500°F and an extension stroke of 5/16" and the bellows' element was fabricated from .060" Inconel® 600 with A-516 gr 70 weld ends. The 92-inch toroidal

expansion joint was also designed per ASME Sec. VIII rules as well as the Expansion Joint Manufacturer EJMA Standards. Upon fabrication completion, a hydrotest was conducted at 600 PSIG to detect leaks.

48" Diameter, Thick-Wall Expansion Joint for a Refinery

This 48-inch diameter thick-wall expansion joint was fabricated for a refinery in Louisiana. The joint was fabricated from carbon steel with a 1/8" minimum thickness. It is designed for an axial force of 2,500 lb./in. with a 1.15-inch axial deflection and a lateral force of 30,000 lb./in. with a 0.002-inch lateral deflection.

5'x 22'Thick-Wall Tied Universal Expansion Joint

This 5' x 22' stainless steel, thick-wall, tied, universal expansion joint was designed and manufactured for a major producer of agricultural chemicals in Louisiana. A special in-house CAD program was utilized in the design effort for these expansion bellows to meet the process parameters. Also, special guides and anchors were provided to facilitate proper operation of this critical unit within the system.

72" Diameter Thick-Wall Expansion Joint

The 72" diameter thick-wall expansion joint pictured at left is for SO2 service. It has 8 3/16" thick, 10 1/2" high 304H bellows to allow 4" of axial compression and 2 1/2" of lateral deflection. These thick-wall joints are designed with indefinite cycle life.

12' Diameter Thick-Wall Duct Expansion Joint

A twelve foot diameter 304 stainless steel thick-wall duct expansion joint is shown supported and braced ready for shipment. Special equipment had rolled the knuckles from ¼" material which is then circumferentially welded. This results in an expansion joint with the minimum stresses possibly exerted and, at the high point of the convolution, its most vulnerable area.

Thick-Wall Expansion Joints for Texas Refinery

The three pictures at right show thick wall expansion joints being installed in a Texas refinery. Workers are covering the expansion joints with insulation, and then covering the insulation with aluminum. The 72" expansion joints, which are fabricated from 1/4" carbon steel plate, have a 10" convolution.

Thick-Wall Expansion Joint

The photograph at left shows thick wall expansion joints. Thick wall joints are cost effective for large diameter piping systems which operate at low pressures. Metals can be selected to satisfy different temperature conditions and combinations of axial, angular and lateral forces.

Rectangular Fabric Expansion Joint

The frame and liner of this rectangular fabric expansion joint are fabricated from 304 stainless steel. The three layer fabric belt consists of an inner layer of silica cloth, a middle layer of mineral wool and an outer layer of PTFE/coated fiber glass. Dye-penetrant examination was performed on all welds of the expansion joint's frame prior to shipping.

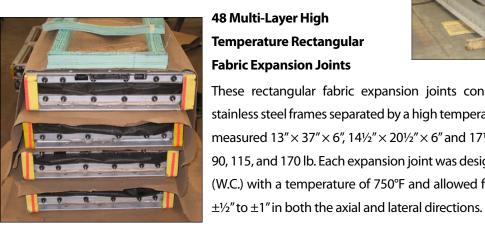
This 36" diameter fabric expansion joint, with a three layer fabric belt, includes 150 lb. flat face flanges with carbon steel backing bars and liner. The fabric belt consists of silica fabric, fiberglass fabric and mineral wool insulation.

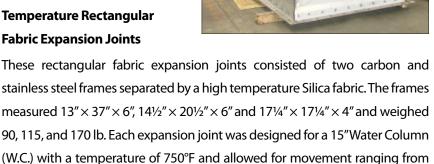
Phone: 713-731-0030 122 sales@usbellows.com

60" Ductwork and a Fabric Expansion Joint

This fabric expansion joint is furnished with acid resisting fabric and also a duct work measuring 34' long and 60" in diameter which was fabricated from ASTM A 516GR 70 carbon steel. The expansion joint was completed within 6 weeks in time for a plant shutdown. A computerized pipe stress analysis, utilizing the Caesar II stress program, was performed to obtain the forces and moments imposed on the equipment nozzles and weights to be carried by the spring supports.

3 Fabric Expansion Joints for a Power Company in Texas


These fabric expansion joints are made of a stainless steel liner, flanged ends, backing bars, and Nomex® Fabric Cloth. They weigh between 370 lb.-380 lb. and measure 81.15" long, 18.44" wide, and 16" high. They are used in high temperature air ducts to allow for expansion. Its thermal growth consists of +/- 1/8" X-Y-Z directions. It is capable of withstanding 400°F at +/- 0.8 PSIG at a maximum flow of


130,650 ACFM. Standard testing was performed for quality assurance.

17 Fabric Expansion Joints for a Gas Turbine Power Plant

These rectangular fabric expansion joints measure 136" x 54" with a weight of 135 lb. each. They were fabricated out of fiberglass fabric with stainless steel frames and are designed for \pm 5 PSIG and 400°F. The expansion joints were manufactured according to specific customer specifications.

48 Multi-Layer High **Temperature Rectangular Fabric Expansion Joints**

54" x 136" Fabric Expansion Joints for a Power System Company

These 17 rectangular fabric expansion joints were custom designed and fabricated for a company in Texas. The expansion joints measure 54" x 136" and weigh 135 lb. each. They are designed for operation up to 5 PSIG and temperatures up to 400°F. The expansion joints are made of fiberglass fabric and have stainless steel frames.

Fabric Expansion Joints for Power System Company in Texas

These expansion joints range in size from 30" to 62" in diameter and the rectangular expansion joints measure 81"x 18" and 136"x 54". They are designed to operate from 0.8 to 5 PSIG and in temperatures ranging from -40°F to 400°F. The products were fabricated using neoprene and fiberglass fabric with carbon and stainless steel frames. A special paint system was applied per customer's request.

78" x 39" Rectangular Fabric Expansion Joint

This 315 lb. 78" x 39" multi-layer fabric expansion joint was designed for a power company in Texas. This fabric expansion joint will be mounted inside a turbine enclosure and allows for a 15,000 cfm air flow through the enclosure. It is designed for 27 1/2"W.C. and 930°F with 0.27" axial and \pm 0.12" lateral movements. The expansion joint is equipped with a stainless steel frame and a 6" thick insulated pillow which is enclosed in a stainless steel woven wire mesh.

5" x 12" Fabric Expansion Joint

This 5'-0"x 12'-0" fabric expansion joint was designed and manufactured for a hot air ducting system in a power plant in Tulsa, OK. It is designed at 15"W.C. and 600°F for 3/4" axial movement and 1/2" lateral movement. The fabric belts are composed of three layers with the outer layer serving as a waterproof barrier.

Rectangular Fabric Expansion Joint for Coal Fired Power Plant

This 21'x 14" expansion joint was designed at 1 PSIG and 1200°F for an air duct at the power plant. The frame is all A-240 and 304 stainless steel construction. This expansion joint is equipped with 6" thick insulation pillows. Telescoping liners hold the insulation pillows between the liner and the fabric belt to reduce heat transfer and prevent ash accumulation.

87 Fabric Expansion Joints for a Furnace Application

U.S. Bellows, Inc. manufactured 87, rectangular fabric expansion joints for a furnace application at a chemical plant in Texas. The joints were designed at 11" W.C. and 750°F for ½" axial and lateral movements. The fabric belts on these joints are composed of three layers. They were equipped with a telescoping liner and 2" thick insulation pillows to reduce the heat transfer.

Fabric Expansion Joints Up to 32' x 12'

These expansion joints reach sizes up to 32'x 12' for a power station in New York. The largest of the expansion joints that are to support the air ducts of the power station, was designed at 32'x 12', while the others measured at 10'x 12'. The expansion joints were fabricated with high temperature fabric belts and 4" thick insulation pillows. The design conditions were at 30" WC and 950°E.

12' x 30' x 12" High Temperature Fabric Expansion Joint

This expansion joint was fabricated with a 3-layered fabric belt, A516 Gr. 70 telescoping liners / frame and insulation pillows. It was designed at 650°F and 30″ WC for 1/2″ compression and 1/4″ lateral. This expansion joint will be installed in an exhaust system at a power plant in New York. EJMA standards, Fluid Sealing Association standards and B31.3 code were used in the design and fabrication of these joints.

Fabric Expansion Joint for Duct System

The photograph at left shows a fabric expansion joint designed and built for installation in a duct system. These joints can be fabricated from a variety of metals, in a variety of shapes, depending on the particular application. They are used where ducts carry hot gases at low pressures. The fabric "belt" is a combination of layers of different materials selected to withstand the high temperatures.

Replacement Fabric Expansion Joint for a Methanol Plant

The photograph at right shows rectangular expansion joints being prepared for shipment to Russia. These were fabricated to replace units in a methanol plant duct system. The fabric belt is constructed of layers of material selected to handle the hot gases at low pressures. The frames can be fabricated from a variety of metals in a variety of shapes depending on the particular application.

High-Temp Fabric Expansion Joint

This high-temperature fabric expansion joint was designed and manufactured by U.S. Bellows, Inc. The fabric "belt" is attached between two short sections of pipe. These expansion joints are inserted in metal pipes which carry hot gases at low pressures. Layers of different materials are selected to make a belt which will function at the high temperatures required.

84" Long Rectangular Metallic Expansion Joint

This rectangular metallic expansion joint measures 22" x 84" x 11" face-to-face and is fabricated from 316 stainless steel bellows and carbon steel flanges. This expansion joint is designed to absorb axial compression in a hot air duct system to a fan inlet. The bellows have three convolutions with mitered corners. The unit was 100% dye-penetrant examined and soap and air tested prior to being shipped to a power plant.

55' Long by 14'6" Rectangular Metal Expansion Joint

U.S. Bellows, Inc. fabricated two metallic expansion joints on an expedited schedule. The expansion joints were fabricated from COR-TEN ASTM 588 carbon steel and are designed for 1.2 PSIG at temperatures up to 748°F. The expansion joints were designed for an

axial compression of 1.5" and a lateral resultant movement

of 1.84". The entire expansion joint was shipped to the job site in one piece. This avoided having to splice weld the expansion joint into one piece, which saved the customer countless assembly man hours in the field.

Tandem Rectangular Expansion Joint for Turbine Exhaust

This expansion joint weighs more than 1,700 lb. and is capable of \pm 1/4" axial movement and \pm 1/4" lateral movement. It is designed to operate under design pressures ranging from full vacuum to 15 PSIG at 250°F. The bellows and liner of the expansion joint are made of 304 stainless steel with a carbon steel flange and duct. To ensure quality, the product was 100% dye-penetrant tested prior to shipping.

57" x 96" Rectangular Seal Expansion Joints

Designed at 2 PSIG for 1350°F, the seal joints provide for one inch of axial movement to prevent damage to flange connections. EJMA Standards and B31.3 code were used in the design and fabrication of these joints. The purpose of the rectangular seal expansion joint is to prevent leakage to outside of the burney windbox. The corners are double mitered to reduce stress. Inconel® 625LCF material was used in fabricating the bellows while A240 tp 310 material was used for the frame. An air test at 5 PSIG was implemented as well as dyepenetrant testing on the bellows.

I B to continue

Three 12' x 8' Rectangular Expansion Joints with Full Radius Corners

These rectangular expansion joints were designed at 5 PSIG and 650°F. They are fabricated with full radius corners which allow for an increased cycle life. The bellows are formed from Inconel® 625 SB-443 GR. 1 and the rest of the assembly is fabricated from A516-70. The long seam welds were 100% x-rayed. A 100% dye-penetrant test was performed on the attachment welds.

28"x 66" Rectangular Expansion Joint

This stainless steel rectangular expansion joint, 28" x 66", was manufactured for an exhaust system at a chemical plant in South Carolina. This joint is equipped with a liner, tie rods system and mitered corner bellows design. The expansion joint was designed for 15 PSIG at 600°F and leak tested. A 100% dye-penetrant test was also performed on all the welds.

48" Tied Universal Expansion Joint with Two-ply Bellows

This tied universal expansion joint will be installed in an oil refinery in Louisiana. The assembly is 48" in diameter and 150" long. The bellows are fabricated from two plies of Inconel® 625 LCF with stainless steel mesh between the plies and the weld ends and all hardware are A 516 GR 70 carbon steel. The design temperature is 500°F at 38 PSIG with 5" lateral movement. The bellows were 100% x-rayed and hydro-tested to 76 PSIG. A pneumatic test between the plies at 15 PSIG was performed prior to shipping.

Tied Universal Expansion Joint with a 45 Degree Mitered Elbow

This tied universal expansion joint with a 45 degree mitered elbow will be installed in a flue gas system. The assembly is 60" in diameter and 215" long. The pipe is fabricated from A 516 GR 70 carbon steel and the bellows are Inconel® 625 LCF. The bellows were 100% x-rayed and hydro-tested to 15 PSIG prior to shipping.

66" Diameter Tied Universal Expansion Joint

This tied universal expansion joint is designed to carry hot gas up to temperatures of 1022°F and pressure up to 5 PSIG. It has a 66″ inside diameter and is 126″ in overall length. The design movements are 3″ lateral and 4.5″ axial compression. The bellows material is Inconel® 825 with 316 L SS flow liners, carbon steel weld ends and limit rods. The bellows and pipe longitudinal weld seams were 100% water clear x-rayed and dye-penetrant tested prior to a 5 PSIG air test.

Phone: 713-731-0030 128 sales@usbellows.com

15' Tied Universal Expansion Joint with Slotted Hinges

This tied universal expansion joint is 18" in diameter and 15' in overall length. The expansion joint is fabricated with an Inconel® 800 bellows, 316H stainless steel pipe and 304H stainless steel tie rods and slotted hinges. The design pressure is 65 PSIG at 1076°F. A hydro-test at 127 PSIG was performed as well as dye-penetrant testing to ensure product quality.

Metallic Universal Expansion Joint for an Emergency Shut Down

One of U.S. Bellows' customer's existing expansion joint failed and caused a plant shut down. They required an immediate replacement joint. This universal expansion joint order was placed, designed and fabricated in just one day. The order came in at 8:30 am on Saturday, Labor Day weekend and was shipped at 4:00 pm, which minimized the time of the plant shut down. This universal expansion joint is 96" in overall length, 20" inside diameter and can absorb 3.25" lateral

movement. A 100% dye-penetrant test and a hydro-test were performed to ensure quality.

Expansion Joints for an Engineering and Construction Company

These expansion joints weigh 1,600 lb. each and are 10" in diameter. They are designed for 611 PSIG and temperatures up to 180°F. These expansion joints are fabricated from 321 carbon steel pipe, tie rods and 300 lb. RF weld neck flanges. The bellows weld seams were 100% x-rayed and the complete assembly was hydro-tested to 917 PSIG to ensure a quality product and performance. The units were shipped with the mating flanges bolted to the end of the assembly.

5,165 lb. Tied Universal Expansion Joint

This 60" diameter and 120" long universal expansion joint was custom designed for a chemical plant in Louisiana. It was fabricated from 304 stainless steel bellows and carbon steel. It was designed for 10 PSIG and 550°F. To ensure quality, a 100% dye-penetrant, radiography and soap leak test was performed prior to shipment.

48" Diameter Tied Universal Expansion Joints

Five tied universal expansion joints ranging in size from 30" to 48" were designed and manufactured for an oil and gas company in France. These expansion joints weigh between 2400 lb. and 3200 lb. and are fabricated from 304-321 SS bellows. They are designed for pressures ranging from 55 to 650 PSIG and 148°F to 300°F operating temperatures. To ensure quality, the joints were 100% x-rayed, 100% dyepenetrant, and hydro-tested at 83 to 975 PSIG.

3,212 lb. Tied Universal Joint for an Oil Piping System

This 5" nominal diameter and 60" long universal expansion joint was designed for an oil piping system application in Nevada. The assembly consists of high strength Inconel® 625LCF bellows and A105 flanges. It is designed for 1400 PSIG and 120°F per B 31.3 and the latest revision of EJMA standards. It is also designed to allow 4 1/2" of lateral movement during operation. A 100% dye-penetrant and hydro-test at 2100 PSIG were preformed prior to shipment.

6" Diameter Tied Universal Expansion Joints

These eight 6" diameter tied universal expansion joints measuring 24" F-F were manufactured for a steam reformer project in Virginia. These expansion joints are made from two-ply Inconel® 625 bellows, A312 TP 304 spool, and A105 flange. They are designed for FV/50 PSIG and 300°F with axial and lateral movements of +/- 0.25" and 0.70", respectively. The joints were 100% x-rayed, 100% dye-penetrant examined, and hydro-tested at 75 PSIG. Flanges, tie rods, and spherical nuts were hot dip galvanized per customer specifications.

Three 23' – 1/3" Expansion Joints for a Refinery in New Jersey

Three 2'-6" OD x 23'-1/3" long expansion joints were designed and manufactured for a refinery in New Jersey. The bellows, pipes, and lugs were fabricated from Inco 800H high nickel alloy, A312tp 316H stainless steel, and A240tp 316H stainless steel, respectively. The expansion joints are designed for 60 PSIG, 1100°F, and with 47,000 lb. of thrust to accommodate for a high temperature application.

Phone: 713-731-0030 130 sales@usbellows.com

Expansion Joint Exhaust Assembly for an Oil Refinery in Texas

U.S. Bellows, Inc. designed and fabricated this expansion joint exhaust assembly for an oil refinery in Texas. This expansion joint is offset for an offshore platform and weighs approximately 8,000 lb. It has a design pressure and temperature of 1 PSIG and 1000°F, respectively. The air test was conducted to detect any leaks.

Tied Universal Expansion Joints for a Chemical Plant

These expansion joints were designed at 170 PSIG and 450°F to absorb lateral movements and tested per B31.3. They were made with Inconel® 625LCF bellows and A105 300 lb. RFSO flanges. The entire assembly was hydro-tested at 255 PSIG and held under pressure for four hours. In order to detect any leaks, each expansion joint and its welds were subjected to the 100% dye-penetrant test and the 100% x-ray test prior to and following forming.

14" Diameter, Tied Universal Expansion Joints

These 14" diameter, tied universal expansion joints were designed and manufactured for a steam application at a power plant in Illinois. The expansion joints were designed at 350 PSIG, 780°F and constructed from Inconel® 625 bellows, A105 300# RFSO flanges, A106 GR. B spool, and SA193 B7 tie rods. The expansion joints were hydro-tested at 525 PSIG.

54" Diameter Tied Universal Expansion Joint

This 54" diameter tied, universal expansion joint was designed and fabricated for the NASA Space Center. The expansion joint was designed at full vacuum and 450°F and constructed with 304 SS bellows, liner and A516 Gr. 70 spool, weld ends and carbon steel tie rods. The bellows' attachment welds were 100% dye-penetrant tested.

28" and 32" Tied Universal Expansion Joints

These 28-inch and 32-inch O.D tied universal expansion joints were fabricated for an oil refinery in China. The expansion joints were fabricated from 321 SS bellows, A105, 150#, RFSO. EJMA Standards and B31.3 code were used in the design and fabrication of these joints.

Elbow Tied Universal Expansion Joints

These 16-inch and 30-inch elbow tied universal expansion joints were manufactured for a power station in Florida. These expansion joints, which are used to transport hot steam, are designed at 150 PSIG and 350°F. The bellows material is fabricated from Inco 625 and elbows and spool from carbon steel.

47 1/4" I.D. Universal Expansion Joint

This picture shows a custom designed 47.25" I.D. universal expansion joint with SB-443 (Inco. 625) round corners bellows, and SA516-70 flanges that was fabricated for an ethylene plant in Saudi Arabia.

Ninety-six 3" NPS tied universal bellows were manufactured for a power plant located in Saudi Arabia. The bellows' element is a unique design containing integral equalizing rings between the corrugations that provide excellent pressure resistance, as well as, anti-squirm resistance. The tear drop shape of the rings add little resistance to movement and cycle life is not compromised. Pressure design is based on 252 PSIG at 689°F with a lateral movement of 1.0".

Phone: 713-731-0030 132 sales@usbellows.com

55" O.D. Universal Gimbal Expansion Joint with Floating Rings

This expansion joint was fabricated for a FCC overhead vapor line at a refinery. It has an overall length of 310" and is fabricated from A387 Gr 11 CI2 spool and Inconel® 625 LCF bellows. It is designed for 50 PSIG and 1075°F with 13" of lateral movement. To ensure quality, 100% dye-penetrant, 100% x-ray and pressure tests were performed on the bellows. Pneumatic tests were also conducted on unit and between bellows dry plies at 55 and 15 PSIG, respectively, prior to shipping.

192" Double Gimbal Expansion Joints

Two 192" double gimbal expansion joints were manufactured for a chemical refinery in Channel View, Texas. These expansion joints consist of A240-321 bellows, A160 Gr. pipe, A516-70 gimbal rings, A516-70 liners and A106 Gr. purge connection rings. They were designed for 15 PSIG and 650°F per B 31.3 and the EJMA

Standards. They were also designed to allow 8 degrees of angular movement during operation. To ensure quality, the expansion joints were air tested at 22 PSIG prior to delivery.

36" Expansion Joints for a Company in Singapore

Three expansion joints were fabricated for an E&C company in Singapore. The three included a 36" single hinged expansion joint, one 36" double hinged expansion joint and one 36" double gimbal expansion joint. These expansion joints will be used in a compressor application. Due to the critical applications of these expansion joints, they were tested per ASME Sect. VIII Div. 1 Appendix 26. The bellows together with the hinge assembly were hydrotested. Additionally, a dry nitrogen test between the two plies was conducted to ensure that each of the two plies would withstand the design pressure.

Specially Designed Expansion Joints with 13" of Movement

These externally pressurized expansion joints were designed for 13" movement. They are capable of withstanding temperatures of 1100°F. Externally pressurizing a bellows eliminates squirm as a limitation to the design and permits the safe acceptance of large amounts of axial thermal expansion.

59" Neoprene Expansion Joint

This neoprene expansion joint measures 59" x 7" and is designed to be used in an air exhaust system. The flanges are fabricated from painted carbon steel angle flanges. The neoprene is fastened to the carbon steel angle flanges by stainless steel clamp rings. The expansion joint absorbs the vibration between the duct work and blower exhaust flange.

Two Expansion Joints for an Air Intake on a Generator Unit

These 59" x 39.5" fabric expansion joints were fabricated using a 1/8" thick neoprene sheet. The joints were then bonded to the carbon steel angles and plates, and secured using stainless steel band clamps, with t-bolt latches. The carbon steel angles and plates were primed and finished at our in-house paint production facility. The expansion joints were designed to facilitate any vibration and movement during the generator units' normal operation.

42" I.D. Rubber Expansion Joints

These expansion joints consist of bellows formed by a 1/8" thick neoprene sheet and A36 carbon steel flanges coated with a special finish per customer's request. These expansion joints are 42" x 7 3/4". A dye-penetrant test was performed on the welds prior to shipping to ensure quality. The turn around for this product was four days.

EPDM Tied Expansion Joints for a Construction Company

Two EPDM tied expansion joints were designed and fabricated for a company in Texas. These expansion joints have an inside diameter of 29". They are composed of A516 carbon steel grade 70 with a six-rod control assembly, EPDM, and plate flange. They were hydro-tested to 217 PSIG. These joints were ordered on a one-week rush basis to replace an existing joint that was leaking.

Phone: 713-731-0030 134 sales@usbellows.com

TERMS OF SALE

GUARANTEE: We guarantee for one year from date of delivery our manufactured products to the extent that we will replace those having manufacturing defects when used for the purpose which we recommend. If goods are defective, the amount of damage is the price of the damaged goods only and no allowance will be made for labor or expense of repairing defective goods or damages resulting from the same. We guarantee the other manufacturers' products we sell to the extent of the guarantees of their respective makers.

SELLER'S LIABILITY: Seller will not be liable for any loss, damage, cost of repairs, incidental or consequential damages of any kind, whether based upon warranty, contract or negligence, arising in connection with the design, manufacture, sale, use or repair of the products or of the engineering designs supplied to the Buyer.

AGREEMENTS: All agreements are subject to strikes, accidents or other causes beyond our control.

SHORTAGES: Any shortages should be made at the time of delivery to the carrier. No claims will be allowed if not written and received within 10 days of receipt of materials.

CLAIMS: All materials sent out will be carefully examined, counted and packed. Claims for goods damaged or lost in transit should be made on the carrier, as our responsibility ceases and the title passes.

SPECIAL ORDER: Orders covering special or non-standard goods are not subject to cancellation except on such terms as we may specify on application.

RETURNS: We cannot accept return of any goods unless our permission has been obtained.

MINIMUM INVOICE: \$100.00 - Minimum Freight \$25.00

TAXES: The amount of sales, excise or other taxes, if any, applicable to the products covered by this order, shall be added to the purchase price and shall be paid by the Buyer unless Buyer provides Seller with an exemption certificate acceptable to the Taxing Authorities.

TERMS: Net 30 days from date of shipment with approval.

FREIGHT ALLOWANCE: All prices are F.O.B. point of shipment. All weights are approximate.

PRICES & DESIGNS: Prices and Designs are subject to change without notice and unless specifically stated on order, materials will be furnished of design in effect at the time the order is filled.

36" Refurbished Rectangular Metallic Expansion Joint

36" Tied Universal Expansion Joint for a Petrochemical Plant

- 1. METALLIC EXPANSION JOINT DURING THE FABRICATION STAGE
- 2. NEOPRENE ROUND EXPANSION JOINTS
- 3. PREPARING TO SHIP A UNIVERSAL METALLIC EXPANSION JOINT
- 4. 14" NPS IN-LINE PRESSURE EXPANSION JOINT
- 5. SEWING A 36" x 10" FACE-TO-FACE FABRIC EXPANSION JOINT
- 6. UNIVERSAL METALLIC EXPANSION JOINTS WITH PROTECTIVE COVERS

WORLDWIDE LEADER IN METALLIC AND FABRIC EXPANSION JOINTS

55' Long by 14'6" Rectangular Metal Expansion Joint for a Power Plant

Metallic Expansion Joints

- Single
- Hinged
- Gimbal
- Universal
- Elbow Pressure Balanced
- In-line Pressure Balanced
- Externally Pressurized
- Toroidal
- Thick-wall (Flanged & Flued)
- Slip-Type
- Rectangular

Fabric Expansion Joints
Duct Work & Furnace Bags
Stock Metallic Bellows

60" Pressure Balanced Elbow Expansion Joint

63" In-line Pressure Balanced Expansion Joint with Refractory Lining

6" Single Expansion Joints for Installation in a Heater for a Delayed Coker Unit

U.S. Bellows is a member of the Expansion Joint Manufacturer's Association (EJMA).

- Member Since 2002
- Expansion Joints Designed per EJMA Standards
- Representation on both the Technical and Management Committees

44" Double Gimbal Expansion Joint

U.S. BELLOWS, INC.® EXPANSION JOINTS

Mailing Address: P.O. BOX 34506 HOUSTON,TX 77234-4506

LOCAL: +1-713-731-0030 FAX: +1-713-731-8640 TOLL-FREE: 1-800-787-5914 Plant Location: 3701 HOLMES ROAD HOUSTON, TX 77051-1545

E-MAIL: sales@usbellows.com www.usbellows.com

USBELLOWS.COM/EMERGENCY

- Available 24/7 for quick-turn or emergency situations
- Installation & maintenance
- Field survey & inspection
- Problem resolution & repair